ナビゲーション:前へ 上へ 次へ
ナビゲーション:前へ 上へ 次へ
3.4 割付け成分の例
以下は多項演算機能を提供する簡単なモジュールの定義とその用例を示したものです。 ここでは割付け成分の組込み代入と自動的に提供される構造体構成子を利用し、 加算演算子(+)を定義します。 より完成されたモジュールでは乗算等の他の演算子も提供されることになるでしょう。
!
! Module providing a single-precision polynomial arithmetic facility
!
MODULE real_poly_module
!
! Define the polynomial type with its constructor.
! We will use the convention of storing the coefficients in the normal
! order of highest degree first, thus in an N-degree polynomial, COEFF(1)
! is the coefficient of X**N, COEFF(N) is the coefficient of X**1, and
! COEFF(N+1) is the scalar.
!
TYPE,PUBLIC :: real_poly
REAL,ALLOCATABLE :: coeff(:)
END TYPE
!
PUBLIC OPERATOR(+)
INTERFACE OPERATOR(+)
MODULE PROCEDURE rp_add_rp,rp_add_r,r_add_rp
END INTERFACE
!
CONTAINS
TYPE(real_poly) FUNCTION rp_add_r(poly,real)
TYPE(real_poly),INTENT(IN) :: poly
REAL,INTENT(IN) :: real
INTEGER isize
IF (.NOT.ALLOCATED(poly%coeff)) STOP 'Undefined polynomial value in +'
isize = SIZE(poly%coeff,1)
rp_add_r%coeff(isize) = poly%coeff(isize) + real
END FUNCTION
TYPE(real_poly) FUNCTION r_add_rp(real,poly)
TYPE(real_poly),INTENT(IN) :: poly
REAL,INTENT(IN) :: real
r_add_rp = rp_add_r(poly,real)
END FUNCTION
TYPE(real_poly) FUNCTION rp_add_rp(poly1,poly2)
TYPE(real_poly),INTENT(IN) :: poly1,poly2
INTEGER I,N,N1,N2
IF (.NOT.ALLOCATED(poly1%coeff).OR..NOT.ALLOCATED(poly2%coeff)) &
STOP 'Undefined polynomial value in +'
! Set N1 and N2 to the degrees of the input polynomials
N1 = SIZE(poly1%coeff) - 1
N2 = SIZE(poly2%coeff) - 1
! The result polynomial is of degree N
N = MAX(N1,N2)
ALLOCATE(rp_add_rp%coeff(N+1))
DO I=0,MIN(N1,N2)
rp_add_rp%coeff(N-I+1) = poly1%coeff(N1-I+1) + poly2%coeff(N2-I+1)
END DO
! At most one of the next two DO loops is ever executed
DO I=N1+1,N
rp_add_rp%coeff(N-I+1) = poly2%coeff(N2-I+1)
END DO
DO I=N2+1,N
rp_add_rp%coeff(N-I+1) = poly1%coeff(N1-I+1)
END DO
END FUNCTION
END MODULE
!
! Sample program
!
PROGRAM example
USE real_poly_module
TYPE(real_poly) p,q,r
p = real_poly((/1.0,2.0,4.0/)) ! x**2 + 2x + 4
q = real_poly((/1.0,-5.5/)) ! x - 5.5
r = p + q ! x**2 + 3x - 1.5
print 1,'The coefficients of the answer are:',r%coeff
1 format(1x,A,3F8.2)
END
上記例を実行すると以下の出力が得られます:
The coefficients of the answer are: 1.00 3.00 -1.50
ナビゲーション:前へ 上へ 次へ
