一変量のAGARCH type2プロセスのパラメータ推定

C言語によるサンプルソースコード : 使用関数名:nag_estimate_agarchII (g13fcc)

ホーム > 製品 > nAG数値計算ライブラリ > サンプルソースコード集 > 一変量のAGARCH type2プロセスのパラメータ推定 (C言語/C++)

Keyword: 一変量時系列, GARCH, 非対称, パラメータ推定

概要

本サンプルは一変量のAGARCH type2プロセスのパラメータ推定を行うC言語によるサンプルプログラムです。 本サンプルでは nag_rand_agarchII (g05pec)により生成される時系列を分析対象としています。

※本サンプルはnAG Cライブラリに含まれる関数 nag_estimate_agarchII() のExampleコードです。本サンプル及び関数の詳細情報は nag_estimate_agarchII のマニュアルページをご参照ください。
ご相談やお問い合わせはこちらまで

出力結果

(本関数の詳細はnag_estimate_agarchII のマニュアルページを参照)

この出力例をダウンロード
nag_estimate_agarchII (g13fcc) Example Program Results

       Parameter estimates     Standard errors       Correct values
              0.0916             (0.0147)               0.0800
              0.2268             (0.0324)               0.2000
              0.6596             (0.0326)               0.7000
             -0.4188             (0.0686)              -0.4000
              2.9804             (0.0565)               3.0000
              1.5345             (0.0362)               1.5000
              2.5314             (0.0424)               2.5000

3 step forecast =   0.4238

  • 3〜10行目にパラメータ推定値、標準誤差、正しい値が出力されています。
  • 12行目には3ステップ先の予測値が出力されています。

ソースコード

(本関数の詳細はnag_estimate_agarchII のマニュアルページを参照)

※本サンプルソースコードはnAG数値計算ライブラリ(Windows, Linux, MAC等に対応)の関数を呼び出します。
サンプルのコンパイル及び実行方法


このソースコードをダウンロード
/* nag_estimate_agarchII (g13fcc) Example Program.
 *
 * CLL6I261D/CLL6I261DL Version.
 *
 * Copyright 2017 Numerical Algorithms Group.
 *
 * nAG C Library
 *
 * Mark 26.1, 2017.
 *
 */
#include <nag.h>
#include <nag_stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <math.h>
#include <nagg05.h>
#include <nagg13.h>

#define X(I, J) x[(I) *tdx + (J)]

int main(void)
{
  /* Integer scalar and array declarations */
  Integer exit_status = 0;
  Integer i, j, k, npar, tdc, tdx, lstate, lr;
  Integer *state = 0;

  /* nAG structures and data types */
  NagError fail;
  Nag_Boolean fcall;

  /* Double scalar and array declarations */
  double fac1, hp, lgf, xterm;
  double *covar = 0, *cvar = 0, *et = 0, *ht = 0, *sc = 0;
  double *se = 0, *theta = 0, *x = 0, *yt = 0, *r = 0;

  /* Choose the base generator */
  Nag_BaseRNG genid = Nag_Basic;
  Integer subid = 0;

  /* Set the seed */
  Integer seed[] = { 111 };
  Integer lseed = 1;

  /* Set parameters for the (randomly generated) time series ... */
  /* Generate data assuming normally distributed errors */
  Nag_ErrorDistn dist = Nag_NormalDistn;
  double df = 0;

  /* Size of the time series */
  Integer num = 1500;

  /* MA and AR parameters */
  Integer ip = 1;
  Integer iq = 1;
  double param[] = { 0.08, 0.2, 0.7 };

  /* Asymmetry parameter */
  double gamma = -0.4;

  /* Regression parameters */
  Integer nreg = 2;
  double mean = 3.0;
  double bx[] = { 1.5, 2.5 };
  /* ... end of parameters for (randomly generated) time series */

  /* When fitting a model to the time series ... */
  /* Include mean in the model */
  Integer mn = 1;

  /* Use the following maximum number of iterations and tolerance */
  Integer maxit = 50;
  double tol = 1e-12;

  /* Enforce stationary conditions */
  Nag_Garch_Stationary_Type stat_opt = Nag_Garch_Stationary_True;

  /* Estimate initial values for regression parameters */
  Nag_Garch_Est_Initial_Type est_opt = Nag_Garch_Est_Initial_True;

  /* Set the number of values to forecast from the fitted model */
  Integer nt = 3;
  /* ... end of model fitting options */

  /* Initialize the error structure */
  INIT_FAIL(fail);

  printf("nag_estimate_agarchII (g13fcc) Example Program Results\n\n");

  /* Get the length of the state array */
  lstate = -1;
  nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_rand_init_repeatable (g05kfc).\n%s\n",
           fail.message);
    exit_status = 1;
    goto END;
  }

  /* Derive various amounts */
  npar = iq + ip + 1;
  tdc = npar + mn + nreg + 1;
  tdx = nreg;

  /* Calculate the size of the reference vector */
  lr = 2 * (iq + ip + 2);

  /* Allocate arrays */
  if (!(covar = nAG_ALLOC((npar + mn + nreg + 1) * tdc, double)) ||
      !(et = nAG_ALLOC(num, double)) ||
      !(ht = nAG_ALLOC(num, double)) ||
      !(sc = nAG_ALLOC(npar + mn + nreg + 1, double)) ||
      !(se = nAG_ALLOC(npar + mn + nreg + 1, double)) ||
      !(state = nAG_ALLOC(lstate, Integer)) ||
      !(r = nAG_ALLOC(lr, double)) ||
      !(theta = nAG_ALLOC(npar + mn + nreg + 1, double)) ||
      !(x = nAG_ALLOC(num * tdx, double)) ||
      !(cvar = nAG_ALLOC(nt, double)) || !(yt = nAG_ALLOC(num, double)))
  {
    printf("Allocation failure\n");
    exit_status = -1;
    goto END;
  }

  /* Initialize the generator to a repeatable sequence */
  nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_rand_init_repeatable (g05kfc).\n%s\n",
           fail.message);
    exit_status = 1;
    goto END;
  }

  /* Set up the time dependent exogenous matrix x */
  for (i = 0; i < num; ++i) {
    fac1 = (double) (i + 1) * .01;
    X(i, 0) = sin(fac1) * 0.7 + 0.01;
    X(i, 1) = fac1 * 0.1 + 0.5;
  }

  /* Generate a realization of a random AGARCH II time series to use */
  fcall = Nag_TRUE;
  nag_rand_agarchII(dist, num, ip, iq, param, gamma, df, ht, yt, fcall, r, lr,
                    state, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_rand_agarchII (g05pec).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
  }

  /* Adjust the randomly generated time series to take into account for the
     exogenous matrix x */
  for (i = 0; i < num; ++i) {
    xterm = 0.0;
    for (k = 0; k < nreg; ++k)
      xterm += X(i, k) * bx[k];

    if (mn == 1)
      yt[i] = mean + xterm + yt[i];
    else
      yt[i] = xterm + yt[i];
  }

  /* Set initial estimates for the parameters */
  for (i = 0; i < npar; ++i) {
    theta[i] = param[i] * 0.5;
  }
  theta[npar] = gamma * 0.5;
  if (mn == 1) {
    theta[npar + mn] = mean * 0.5;
  }
  if (est_opt != Nag_Garch_Est_Initial_True) {
    for (i = 0; i < nreg; ++i)
      theta[npar + mn + 1 + i] = bx[i] * 0.5;
  }

  /* nag_estimate_agarchII (g13fcc).
   * Univariate time series, parameter estimation for a GARCH
   * process with asymmetry of the form
   * (|epsilon_(t-1)| + gamma epsilon_(t-1))^2
   */
  nag_estimate_agarchII(yt, x, tdx, num, ip, iq, nreg, mn, theta, se, sc,
                        covar, tdc, &hp, et, ht, &lgf, stat_opt, est_opt,
                        maxit, tol, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_estimate_agarchII (g13fcc).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
  }

  /* Display the results */
  printf("       Parameter estimates     Standard errors       "
         "Correct values\n");
  for (j = 0; j < npar; ++j)
    printf("%20.4f             (%6.4f) %20.4f\n", theta[j], se[j], param[j]);
  printf("%20.4f             (%6.4f) %20.4f\n", theta[npar], se[npar], gamma);
  if (mn == 1)
    printf("%20.4f             (%6.4f) %20.4f\n", theta[npar + mn],
           se[npar + mn], mean);
  for (j = 0; j < nreg; ++j)
    printf("%20.4f             (%6.4f) %20.4f\n",
           theta[mn + npar + 1 + j], se[mn + npar + 1 + j], bx[j]);

  /* Now forecast nt steps ahead */
  gamma = theta[npar];

  /* nag_forecast_agarchII (g13fdc).
   * Univariate time series, forecast function for a GARCH
   * process with asymmetry of the form
   * (|epsilon_(t-1)| + gamma epsilon_(t-1))^2
   */
  nag_forecast_agarchII(num, nt, ip, iq, theta, gamma, cvar, ht, et, &fail);
  printf("\n%ld step forecast = %8.4f\n", nt, cvar[nt - 1]);

END:
  nAG_FREE(covar);
  nAG_FREE(et);
  nAG_FREE(ht);
  nAG_FREE(state);
  nAG_FREE(r);
  nAG_FREE(sc);
  nAG_FREE(se);
  nAG_FREE(theta);
  nAG_FREE(cvar);
  nAG_FREE(x);
  nAG_FREE(yt);

  return exit_status;
}


関連情報
Privacy Policy  /  Trademarks