概要
本サンプルはFortran言語によりLAPACKルーチンZTGSJAを利用するサンプルプログラムです。
入力データ
(本ルーチンの詳細はZTGSJA のマニュアルページを参照)| このデータをダウンロード |
ZTGSJA Example Program Data 6 4 2 :Values of M, N and P ( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41) (-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56) ( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60) ( 0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20) ( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59) ( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) :End of matrix A ( 1.00, 0.00) ( 0.00, 0.00) (-1.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 1.00, 0.00) ( 0.00, 0.00) (-1.00, 0.00) :End of matrix B
出力結果
(本ルーチンの詳細はZTGSJA のマニュアルページを参照)| この出力例をダウンロード |
ZTGSJA Example Program Results
Number of infinite generalized singular values (K)
2
Number of finite generalized singular values (L)
2
Effective Numerical rank of (A**T B**T)**T (K+L)
4
Finite generalized singular values
2.0720E+00 1.1058E+00
Unitary matrix U
1 2
1 ( -1.3038E-02, -3.2595E-01) ( -1.4039E-01, -2.6167E-01)
2 ( 4.2764E-01, -6.2582E-01) ( 8.6298E-02, -3.8174E-02)
3 ( -3.2595E-01, 1.6428E-01) ( 3.8163E-01, -1.8219E-01)
4 ( 1.5906E-01, -5.2151E-03) ( -2.8207E-01, 1.9732E-01)
5 ( -1.7210E-01, -1.3038E-02) ( -5.0942E-01, -5.0319E-01)
6 ( -2.6336E-01, -2.4772E-01) ( -1.0861E-01, 2.8474E-01)
3 4
1 ( 2.5177E-01, -7.9789E-01) ( -5.0956E-02, -2.1750E-01)
2 ( -3.2188E-01, 1.6112E-01) ( 1.1979E-01, 1.6319E-01)
3 ( 1.3231E-01, -1.4565E-02) ( -5.0671E-01, 1.8615E-01)
4 ( 2.1598E-01, 1.8813E-01) ( -4.0163E-01, 2.6787E-01)
5 ( 3.6488E-02, 2.0316E-01) ( 1.9271E-01, 1.5574E-01)
6 ( 1.0906E-01, -1.2712E-01) ( -8.8159E-02, 5.6169E-01)
5 6
1 ( -4.5947E-02, 1.4052E-04) ( -5.2773E-02, -2.2492E-01)
2 ( -8.0311E-02, -4.3605E-01) ( -3.8117E-02, -2.1907E-01)
3 ( 5.9714E-02, -5.8974E-01) ( -1.3850E-01, -9.0941E-02)
4 ( -4.6443E-02, 3.0864E-01) ( -3.7354E-01, -5.5148E-01)
5 ( 5.7843E-01, -1.2439E-01) ( -1.8815E-02, -5.5686E-02)
6 ( 1.5763E-02, 4.7130E-02) ( 6.5007E-01, 4.9173E-03)
Unitary matrix V
1 2
1 ( 9.8930E-01, 1.9041E-19) ( -1.1461E-01, 9.0250E-02)
2 ( -1.1461E-01, -9.0250E-02) ( -9.8930E-01, 1.9041E-19)
Unitary matrix Q
1 2
1 ( 7.0711E-01, 0.0000E+00) ( 0.0000E+00, 0.0000E+00)
2 ( 0.0000E+00, 0.0000E+00) ( 7.0711E-01, 0.0000E+00)
3 ( 7.0711E-01, 0.0000E+00) ( 0.0000E+00, 0.0000E+00)
4 ( 0.0000E+00, 0.0000E+00) ( 7.0711E-01, 0.0000E+00)
3 4
1 ( 6.9954E-01, 4.7274E-19) ( 8.1044E-02, -6.3817E-02)
2 ( -8.1044E-02, -6.3817E-02) ( 6.9954E-01, -4.7274E-19)
3 ( -6.9954E-01, -4.7274E-19) ( -8.1044E-02, 6.3817E-02)
4 ( 8.1044E-02, 6.3817E-02) ( -6.9954E-01, 4.7274E-19)
Nonsingular upper triangular matrix R
1 2
1 ( -2.7118E+00, 0.0000E+00) ( -1.4390E+00, -1.0315E+00)
2 ( -1.8583E+00, 0.0000E+00)
3
4
3 4
1 ( -7.6930E-02, 1.3613E+00) ( -2.8137E-01, -3.2425E-02)
2 ( -1.0760E+00, 3.1016E-02) ( 1.3292E+00, 3.6772E-01)
3 ( 3.2537E+00, 0.0000E+00) ( -6.3858E-17, 6.3858E-17)
4 ( -2.1084E+00, 0.0000E+00)
Number of cycles of the Kogbetliantz method
2
ソースコード
(本ルーチンの詳細はZTGSJA のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
| このソースコードをダウンロード |
Program ztgsja_example
! ZTGSJA Example Program Text
! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com
! .. Use Statements ..
Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen_comp
Use lapack_interfaces, Only: zggsvp3, zlange, ztgsja
Use lapack_precision, Only: dp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=dp) :: eps, tola, tolb
Integer :: i, ifail, info, irank, j, k, l, lda, ldb, ldq, ldu, ldv, &
lwork, m, n, ncycle, p
! .. Local Arrays ..
Complex (Kind=dp), Allocatable :: a(:, :), b(:, :), q(:, :), tau(:), &
u(:, :), v(:, :), work(:)
Complex (Kind=dp) :: wdum(1)
Real (Kind=dp), Allocatable :: alpha(:), beta(:), rwork(:)
Integer, Allocatable :: iwork(:)
Character (1) :: clabs(1), rlabs(1)
! .. Intrinsic Procedures ..
Intrinsic :: epsilon, max, nint, real
! .. Executable Statements ..
Write (nout, *) 'ZTGSJA Example Program Results'
Write (nout, *)
Flush (nout)
! Skip heading in data file
Read (nin, *)
Read (nin, *) m, n, p
lda = m
ldb = p
ldq = n
ldu = m
ldv = p
Allocate (a(lda,n), b(ldb,n), q(ldq,n), tau(n), u(ldu,m), v(ldv,p), &
alpha(n), beta(n), rwork(2*n), iwork(n))
! Determine maximum workspace needed by zggsvp3 and ztgsja
Call zggsvp3('U', 'V', 'Q', m, p, n, a, lda, b, ldb, tola, tolb, k, l, &
u, ldu, v, ldv, q, ldq, iwork, rwork, tau, wdum, -1, info)
lwork = max(nint(real(wdum(1))), 2*n)
Allocate (work(lwork))
! Read the m by n matrix A and p by n matrix B from data file
Read (nin, *)(a(i,1:n), i=1, m)
Read (nin, *)(b(i,1:n), i=1, p)
! Compute tola and tolb as
! tola = max(m,n)*norm(A)*macheps
! tolb = max(p,n)*norm(B)*macheps
eps = epsilon(1.0E0_dp)
tola = real(max(m,n), kind=dp)*zlange('One-norm', m, n, a, lda, rwork)* &
eps
tolb = real(max(p,n), kind=dp)*zlange('One-norm', p, n, b, ldb, rwork)* &
eps
! Compute the factorization of (A, B)
! (A = U1*S*(Q1**H), B = V1*T*(Q1**H))
Call zggsvp3('U', 'V', 'Q', m, p, n, a, lda, b, ldb, tola, tolb, k, l, &
u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, lwork, info)
! Compute the generalized singular value decomposition of (A, B)
! (A = U*D1*(0 R)*(Q**H), B = V*D2*(0 R)*(Q**H))
Call ztgsja('U', 'V', 'Q', m, p, n, k, l, a, lda, b, ldb, tola, tolb, &
alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)
If (info==0) Then
! Print solution
irank = k + l
Write (nout, *) 'Number of infinite generalized singular values (K)'
Write (nout, 100) k
Write (nout, *) 'Number of finite generalized singular values (L)'
Write (nout, 100) l
Write (nout, *) ' Effective Numerical rank of (A**T B**T)**T (K+L)'
Write (nout, 100) irank
Write (nout, *)
Write (nout, *) 'Finite generalized singular values'
Write (nout, 110)(alpha(j)/beta(j), j=k+1, irank)
Write (nout, *)
Flush (nout)
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call nagf_file_print_matrix_complex_gen_comp('General', ' ', m, m, u, &
ldu, 'Bracketed', '1P,E12.4', 'Unitary matrix U', 'Integer', rlabs, &
'Integer', clabs, 80, 0, ifail)
Write (nout, *)
Flush (nout)
Call nagf_file_print_matrix_complex_gen_comp('General', ' ', p, p, v, &
ldv, 'Bracketed', '1P,E12.4', 'Unitary matrix V', 'Integer', rlabs, &
'Integer', clabs, 80, 0, ifail)
Write (nout, *)
Flush (nout)
Call nagf_file_print_matrix_complex_gen_comp('General', ' ', n, n, q, &
ldq, 'Bracketed', '1P,E12.4', 'Unitary matrix Q', 'Integer', rlabs, &
'Integer', clabs, 80, 0, ifail)
Write (nout, *)
Flush (nout)
Call nagf_file_print_matrix_complex_gen_comp('Upper triangular', &
'Non-unit', irank, irank, a(1,n-irank+1), lda, 'Bracketed', &
'1P,E12.4', 'Nonsingular upper triangular matrix R', 'Integer', &
rlabs, 'Integer', clabs, 80, 0, ifail)
Write (nout, *)
Write (nout, *) 'Number of cycles of the Kogbetliantz method'
Write (nout, 100) ncycle
Else
Write (nout, 120) 'Failure in ZTGSJA. INFO =', info
End If
100 Format (1X, I5)
110 Format (3X, 8(1P,E12.4))
120 Format (1X, A, I4)
End Program
