概要
本サンプルはFortran言語によりLAPACKルーチンZPBSVXを利用するサンプルプログラムです。
以下の式を解きます。


及び

解のエラー推定値、均衡化についての情報、スケーリングされた行列

入力データ
(本ルーチンの詳細はZPBSVX のマニュアルページを参照)このデータをダウンロード |
ZPBSVX Example Program Data 4 1 2 :Values of N, KD and NRHS ( 9.39, 0.00) ( 1.08,-1.73) ( 1.69, 0.00) ( -0.04, 0.29) ( 2.65, 0.00) ( -0.33, 2.24) ( 2.17, 0.00) :End of matrix A (-12.42,68.42) (54.30,-56.56) ( -9.93, 0.88) (18.32, 4.76) (-27.30,-0.01) (-4.40, 9.97) ( 5.31,23.63) ( 9.43, 1.41) :End of matrix B
出力結果
(本ルーチンの詳細はZPBSVX のマニュアルページを参照)この出力例をダウンロード |
ZPBSVX Example Program Results Solution(s) 1 2 1 (-1.0000, 8.0000) ( 5.0000,-6.0000) 2 ( 2.0000,-3.0000) ( 2.0000, 3.0000) 3 (-4.0000,-5.0000) (-8.0000, 4.0000) 4 ( 7.0000, 6.0000) (-1.0000,-7.0000) Backward errors (machine-dependent) 1.0E-16 1.1E-16 Estimated forward error bounds (machine-dependent) 3.6E-14 3.4E-14 Estimate of reciprocal condition number 7.6E-03 A has not been equilibrated
ソースコード
(本ルーチンの詳細はZPBSVX のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
このソースコードをダウンロード |
Program zpbsvx_example ! ZPBSVX Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen_comp Use lapack_interfaces, Only: zpbsvx Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Integer, Parameter :: nin = 5, nout = 6 Character (1), Parameter :: uplo = 'U' ! .. Local Scalars .. Real (Kind=dp) :: rcond Integer :: i, ifail, info, j, kd, ldab, ldafb, ldb, ldx, n, nrhs Character (1) :: equed ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: ab(:, :), afb(:, :), b(:, :), work(:), & x(:, :) Real (Kind=dp), Allocatable :: berr(:), ferr(:), rwork(:), s(:) Character (1) :: clabs(1), rlabs(1) ! .. Intrinsic Procedures .. Intrinsic :: max, min ! .. Executable Statements .. Write (nout, *) 'ZPBSVX Example Program Results' Write (nout, *) Flush (nout) ! Skip heading in data file Read (nin, *) Read (nin, *) n, kd, nrhs ldab = kd + 1 ldafb = kd + 1 ldb = n ldx = n Allocate (ab(ldab,n), afb(ldafb,n), b(ldb,nrhs), work(3*n), x(ldx,nrhs), & berr(nrhs), ferr(nrhs), rwork(n), s(n)) ! Read the upper or lower triangular part of the band matrix A ! from data file If (uplo=='U') Then Read (nin, *)((ab(kd+1+i-j,j),j=i,min(n,i+kd)), i=1, n) Else If (uplo=='L') Then Read (nin, *)((ab(1+i-j,j),j=max(1,i-kd),i), i=1, n) End If ! Read B from data file Read (nin, *)(b(i,1:nrhs), i=1, n) ! Solve the equations AX = B for X Call zpbsvx('Equilibration', uplo, n, kd, nrhs, ab, ldab, afb, ldafb, & equed, s, b, ldb, x, ldx, rcond, ferr, berr, work, rwork, info) If ((info==0) .Or. (info==n+1)) Then ! Print solution, error bounds, condition number and the form ! of equilibration ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call nagf_file_print_matrix_complex_gen_comp('General', ' ', n, nrhs, & x, ldx, 'Bracketed', 'F7.4', 'Solution(s)', 'Integer', rlabs, & 'Integer', clabs, 80, 0, ifail) Write (nout, *) Write (nout, *) 'Backward errors (machine-dependent)' Write (nout, 100) berr(1:nrhs) Write (nout, *) Write (nout, *) 'Estimated forward error bounds (machine-dependent)' Write (nout, 100) ferr(1:nrhs) Write (nout, *) Write (nout, *) 'Estimate of reciprocal condition number' Write (nout, 100) rcond Write (nout, *) If (equed=='N') Then Write (nout, *) 'A has not been equilibrated' Else If (equed=='Y') Then Write (nout, *) & 'A has been row and column scaled as diag(S)*A*diag(S)' End If If (info==n+1) Then Write (nout, *) Write (nout, *) 'The matrix A is singular to working precision' End If Else Write (nout, 110) 'The leading minor of order ', info, & ' is not positive definite' End If 100 Format ((3X,1P,7E11.1)) 110 Format (1X, A, I3, A) End Program