概要
本サンプルはFortran言語によりLAPACKルーチンZHPSVXを利用するサンプルプログラムです。
以下の式を解きます。


及び

解のエラー推定値、行列

入力データ
(本ルーチンの詳細はZHPSVX のマニュアルページを参照)このデータをダウンロード |
ZHPSVX Example Program Data 4 2 :N and NRHS ( -1.84, 0.00) ( 0.11, -0.11) ( -1.78, -1.18) ( 3.91, -1.50) ( -4.63 , 0.00) ( -1.84, 0.03) ( 2.21, 0.21) ( -8.87, 0.00) ( 1.58, -0.90) ( -1.36 , 0.00) :End matrix A ( 2.98,-10.18) ( 28.68,-39.89) ( -9.58, 3.88) (-24.79, -8.40) ( -0.77,-16.05) ( 4.23,-70.02) ( 7.79, 5.48) (-35.39, 18.01) :End matrix B
出力結果
(本ルーチンの詳細はZHPSVX のマニュアルページを参照)この出力例をダウンロード |
ZHPSVX Example Program Results Solution(s) 1 2 1 ( 2.0000, 1.0000) (-8.0000, 6.0000) 2 ( 3.0000,-2.0000) ( 7.0000,-2.0000) 3 (-1.0000, 2.0000) (-1.0000, 5.0000) 4 ( 1.0000,-1.0000) ( 3.0000,-4.0000) Backward errors (machine-dependent) 5.1E-17 5.9E-17 Estimated forward error bounds (machine-dependent) 2.5E-15 3.0E-15 Estimate of reciprocal condition number 1.5E-01
ソースコード
(本ルーチンの詳細はZHPSVX のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
このソースコードをダウンロード |
Program zhpsvx_example ! ZHPSVX Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen_comp Use lapack_interfaces, Only: zhpsvx Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Integer, Parameter :: nin = 5, nout = 6 Character (1), Parameter :: uplo = 'U' ! .. Local Scalars .. Real (Kind=dp) :: rcond Integer :: i, ifail, info, j, ldb, ldx, n, nrhs ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: afp(:), ap(:), b(:, :), work(:), & x(:, :) Real (Kind=dp), Allocatable :: berr(:), ferr(:), rwork(:) Integer, Allocatable :: ipiv(:) Character (1) :: clabs(1), rlabs(1) ! .. Executable Statements .. Write (nout, *) 'ZHPSVX Example Program Results' Write (nout, *) Flush (nout) ! Skip heading in data file Read (nin, *) Read (nin, *) n, nrhs ldb = n ldx = n Allocate (afp((n*(n+1))/2), ap((n*(n+1))/2), b(ldb,nrhs), work(2*n), x( & ldx,nrhs), berr(nrhs), ferr(nrhs), rwork(n), ipiv(n)) ! Read the upper or lower triangular part of the matrix A from ! data file If (uplo=='U') Then Read (nin, *)((ap(i+(j*(j-1))/2),j=i,n), i=1, n) Else If (uplo=='L') Then Read (nin, *)((ap(i+((2*n-j)*(j-1))/2),j=1,i), i=1, n) End If ! Read B from data file Read (nin, *)(b(i,1:nrhs), i=1, n) ! Solve the equations AX = B for X Call zhpsvx('Not factored', uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, & ldx, rcond, ferr, berr, work, rwork, info) If ((info==0) .Or. (info==n+1)) Then ! Print solution, error bounds and condition number ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call nagf_file_print_matrix_complex_gen_comp('General', ' ', n, nrhs, & x, ldx, 'Bracketed', 'F7.4', 'Solution(s)', 'Integer', rlabs, & 'Integer', clabs, 80, 0, ifail) Write (nout, *) Write (nout, *) 'Backward errors (machine-dependent)' Write (nout, 100) berr(1:nrhs) Write (nout, *) Write (nout, *) 'Estimated forward error bounds (machine-dependent)' Write (nout, 100) ferr(1:nrhs) Write (nout, *) Write (nout, *) 'Estimate of reciprocal condition number' Write (nout, 100) rcond Write (nout, *) If (info==n+1) Then Write (nout, *) Write (nout, *) 'The matrix A is singular to working precision' End If Else Write (nout, 110) 'The diagonal block ', info, ' of D is zero' End If 100 Format ((3X,1P,7E11.1)) 110 Format (1X, A, I3, A) End Program