概要
本サンプルはFortran言語によりLAPACKルーチンZHEGVDを利用するサンプルプログラムです。
一般化エルミート固有値問題

及び


ZHEGVの例題プログラムは一般化エルミート固有値問題の解き方を示します。
入力データ
(本ルーチンの詳細はZHEGVD のマニュアルページを参照)このデータをダウンロード |
ZHEGVD Example Program Data 4 :Value of N (-7.36, 0.00) ( 0.77, -0.43) (-0.64, -0.92) ( 3.01, -6.97) ( 3.49, 0.00) ( 2.19, 4.45) ( 1.90, 3.73) ( 0.12, 0.00) ( 2.88, -3.17) (-2.54, 0.00) :End of matrix A ( 3.23, 0.00) ( 1.51, -1.92) ( 1.90, 0.84) ( 0.42, 2.50) ( 3.58, 0.00) (-0.23, 1.11) (-1.18, 1.37) ( 4.09, 0.00) ( 2.33, -0.14) ( 4.29, 0.00) :End of matrix B
出力結果
(本ルーチンの詳細はZHEGVD のマニュアルページを参照)この出力例をダウンロード |
ZHEGVD Example Program Results Eigenvalues -61.7321 -6.6195 0.0725 43.1883 Eigenvectors 1 2 3 4 1 0.3903 -0.1560 2.2909 -0.1943 0.0000 -0.0404 0.0000 -0.0690 2 -0.1814 -0.1552 -0.5042 0.3884 0.0114 -0.3651 -0.7120 0.0000 3 0.0438 0.5364 -1.2701 0.0657 0.0338 0.0000 -0.4547 -0.2095 4 -0.2221 -0.1298 0.5706 0.2924 -0.2272 -0.1880 1.3132 -0.0675 Estimate of reciprocal condition number for B 2.5E-03 Error estimates (relative to machine precision) for the eigenvalues: 2.4E+04 2.8E+03 2.3E+02 1.7E+04 for the eigenvectors: 4.7E+02 1.0E+03 1.0E+03 4.9E+02
ソースコード
(本ルーチンの詳細はZHEGVD のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
このソースコードをダウンロード |
Program zhegvd_example ! ZHEGVD Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen Use lapack_interfaces, Only: ddisna, zhegvd, zlanhe, ztrcon Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Real (Kind=dp), Parameter :: one = 1.0E+0_dp Integer, Parameter :: nb = 64, nin = 5, nout = 6 ! .. Local Scalars .. Complex (Kind=dp) :: scal Real (Kind=dp) :: anorm, bnorm, eps, rcond, rcondb, t1, t2 Integer :: i, ifail, info, k, lda, ldb, liwork, lrwork, lwork, n ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: a(:, :), b(:, :), work(:) Complex (Kind=dp) :: cdum(1) Real (Kind=dp), Allocatable :: eerbnd(:), rcondz(:), rwork(:), w(:), & zerbnd(:) Real (Kind=dp) :: rdum(1) Integer :: idum(1) Integer, Allocatable :: iwork(:) ! .. Intrinsic Procedures .. Intrinsic :: abs, conjg, epsilon, max, maxloc, nint, real ! .. Executable Statements .. Write (nout, *) 'ZHEGVD Example Program Results' Write (nout, *) ! Skip heading in data file Read (nin, *) Read (nin, *) n lda = n ldb = n Allocate (a(lda,n), b(ldb,n), eerbnd(n), rcondz(n), w(n), zerbnd(n)) ! Use routine workspace query to get optimal workspace. lwork = -1 liwork = -1 lrwork = -1 Call zhegvd(2, 'Vectors', 'Upper', n, a, lda, b, ldb, w, cdum, lwork, & rdum, lrwork, idum, liwork, info) ! Make sure that there is enough workspace for block size nb. lwork = max((nb+2+n)*n, nint(real(cdum(1)))) lrwork = max(1+(5+2*n)*n, nint(rdum(1))) liwork = max(3+5*n, idum(1)) Allocate (work(lwork), rwork(lrwork), iwork(liwork)) ! Read the upper triangular parts of the matrices A and B Read (nin, *)(a(i,i:n), i=1, n) Read (nin, *)(b(i,i:n), i=1, n) ! Compute the one-norms of the symmetric matrices A and B anorm = zlanhe('One norm', 'Upper', n, a, lda, rwork) bnorm = zlanhe('One norm', 'Upper', n, b, ldb, rwork) ! Solve the generalized Hermitian eigenvalue problem ! A*B*x = lambda*x (itype = 2) Call zhegvd(2, 'Vectors', 'Upper', n, a, lda, b, ldb, w, work, lwork, & rwork, lrwork, iwork, liwork, info) If (info==0) Then ! Print solution Write (nout, *) 'Eigenvalues' Write (nout, 100) w(1:n) Flush (nout) ! Normalize the eigenvectors, largest element real Do i = 1, n rwork(1:n) = abs(a(1:n,i)) k = maxloc(rwork(1:n), 1) scal = conjg(a(k,i))/abs(a(k,i)) a(1:n, i) = a(1:n, i)*scal End Do ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call nagf_file_print_matrix_complex_gen('General', ' ', n, n, a, lda, & 'Eigenvectors', ifail) ! Call ZTRCON to estimate the reciprocal condition ! number of the Cholesky factor of B. Note that: ! cond(B) = 1/rcond**2 Call ztrcon('One norm', 'Upper', 'Non-unit', n, b, ldb, rcond, work, & rwork, info) ! Print the reciprocal condition number of B rcondb = rcond**2 Write (nout, *) Write (nout, *) 'Estimate of reciprocal condition number for B' Write (nout, 110) rcondb Flush (nout) ! Get the machine precision, eps, and if rcondb is not less ! than eps**2, compute error estimates for the eigenvalues and ! eigenvectors eps = epsilon(1.0E0_dp) If (rcond>=eps) Then ! Call DDISNA to estimate reciprocal condition ! numbers for the eigenvectors of (A*B - lambda*I) Call ddisna('Eigenvectors', n, n, w, rcondz, info) ! Compute the error estimates for the eigenvalues and ! eigenvectors t1 = one/rcond t2 = anorm*bnorm Do i = 1, n eerbnd(i) = (t2+abs(w(i))/rcondb) zerbnd(i) = t1*(t2/rcondz(i)+t1) End Do ! Print the approximate error bounds for the eigenvalues ! and vectors Write (nout, *) Write (nout, *) 'Error estimates (relative to machine precision)' Write (nout, *) 'for the eigenvalues:' Write (nout, 110) eerbnd(1:n) Write (nout, *) Write (nout, *) 'for the eigenvectors:' Write (nout, 110) zerbnd(1:n) Else Write (nout, *) Write (nout, *) 'B is very ill-conditioned, error ', & 'estimates have not been computed' End If Else If (info>n) Then i = info - n Write (nout, 120) 'The leading minor of order ', i, & ' of B is not positive definite' Else Write (nout, 130) 'Failure in ZHEGVD. INFO =', info End If 100 Format (3X, (6F11.4)) 110 Format (4X, 1P, 6E11.1) 120 Format (1X, A, I4, A) 130 Format (1X, A, I4) End Program