概要
本サンプルはFortran言語によりLAPACKルーチンZHEGVDを利用するサンプルプログラムです。
一般化エルミート固有値問題
及び

ZHEGVの例題プログラムは一般化エルミート固有値問題
の解き方を示します。
入力データ
(本ルーチンの詳細はZHEGVD のマニュアルページを参照)| このデータをダウンロード |
ZHEGVD Example Program Data
4 :Value of N
(-7.36, 0.00) ( 0.77, -0.43) (-0.64, -0.92) ( 3.01, -6.97)
( 3.49, 0.00) ( 2.19, 4.45) ( 1.90, 3.73)
( 0.12, 0.00) ( 2.88, -3.17)
(-2.54, 0.00) :End of matrix A
( 3.23, 0.00) ( 1.51, -1.92) ( 1.90, 0.84) ( 0.42, 2.50)
( 3.58, 0.00) (-0.23, 1.11) (-1.18, 1.37)
( 4.09, 0.00) ( 2.33, -0.14)
( 4.29, 0.00) :End of matrix B
出力結果
(本ルーチンの詳細はZHEGVD のマニュアルページを参照)| この出力例をダウンロード |
ZHEGVD Example Program Results
Eigenvalues
-61.7321 -6.6195 0.0725 43.1883
Eigenvectors
1 2 3 4
1 0.3903 -0.1560 2.2909 -0.1943
0.0000 -0.0404 0.0000 -0.0690
2 -0.1814 -0.1552 -0.5042 0.3884
0.0114 -0.3651 -0.7120 0.0000
3 0.0438 0.5364 -1.2701 0.0657
0.0338 0.0000 -0.4547 -0.2095
4 -0.2221 -0.1298 0.5706 0.2924
-0.2272 -0.1880 1.3132 -0.0675
Estimate of reciprocal condition number for B
2.5E-03
Error estimates (relative to machine precision)
for the eigenvalues:
2.4E+04 2.8E+03 2.3E+02 1.7E+04
for the eigenvectors:
4.7E+02 1.0E+03 1.0E+03 4.9E+02
ソースコード
(本ルーチンの詳細はZHEGVD のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
| このソースコードをダウンロード |
Program zhegvd_example
! ZHEGVD Example Program Text
! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com
! .. Use Statements ..
Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen
Use lapack_interfaces, Only: ddisna, zhegvd, zlanhe, ztrcon
Use lapack_precision, Only: dp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Real (Kind=dp), Parameter :: one = 1.0E+0_dp
Integer, Parameter :: nb = 64, nin = 5, nout = 6
! .. Local Scalars ..
Complex (Kind=dp) :: scal
Real (Kind=dp) :: anorm, bnorm, eps, rcond, rcondb, t1, t2
Integer :: i, ifail, info, k, lda, ldb, liwork, lrwork, lwork, n
! .. Local Arrays ..
Complex (Kind=dp), Allocatable :: a(:, :), b(:, :), work(:)
Complex (Kind=dp) :: cdum(1)
Real (Kind=dp), Allocatable :: eerbnd(:), rcondz(:), rwork(:), w(:), &
zerbnd(:)
Real (Kind=dp) :: rdum(1)
Integer :: idum(1)
Integer, Allocatable :: iwork(:)
! .. Intrinsic Procedures ..
Intrinsic :: abs, conjg, epsilon, max, maxloc, nint, real
! .. Executable Statements ..
Write (nout, *) 'ZHEGVD Example Program Results'
Write (nout, *)
! Skip heading in data file
Read (nin, *)
Read (nin, *) n
lda = n
ldb = n
Allocate (a(lda,n), b(ldb,n), eerbnd(n), rcondz(n), w(n), zerbnd(n))
! Use routine workspace query to get optimal workspace.
lwork = -1
liwork = -1
lrwork = -1
Call zhegvd(2, 'Vectors', 'Upper', n, a, lda, b, ldb, w, cdum, lwork, &
rdum, lrwork, idum, liwork, info)
! Make sure that there is enough workspace for block size nb.
lwork = max((nb+2+n)*n, nint(real(cdum(1))))
lrwork = max(1+(5+2*n)*n, nint(rdum(1)))
liwork = max(3+5*n, idum(1))
Allocate (work(lwork), rwork(lrwork), iwork(liwork))
! Read the upper triangular parts of the matrices A and B
Read (nin, *)(a(i,i:n), i=1, n)
Read (nin, *)(b(i,i:n), i=1, n)
! Compute the one-norms of the symmetric matrices A and B
anorm = zlanhe('One norm', 'Upper', n, a, lda, rwork)
bnorm = zlanhe('One norm', 'Upper', n, b, ldb, rwork)
! Solve the generalized Hermitian eigenvalue problem
! A*B*x = lambda*x (itype = 2)
Call zhegvd(2, 'Vectors', 'Upper', n, a, lda, b, ldb, w, work, lwork, &
rwork, lrwork, iwork, liwork, info)
If (info==0) Then
! Print solution
Write (nout, *) 'Eigenvalues'
Write (nout, 100) w(1:n)
Flush (nout)
! Normalize the eigenvectors, largest element real
Do i = 1, n
rwork(1:n) = abs(a(1:n,i))
k = maxloc(rwork(1:n), 1)
scal = conjg(a(k,i))/abs(a(k,i))
a(1:n, i) = a(1:n, i)*scal
End Do
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call nagf_file_print_matrix_complex_gen('General', ' ', n, n, a, lda, &
'Eigenvectors', ifail)
! Call ZTRCON to estimate the reciprocal condition
! number of the Cholesky factor of B. Note that:
! cond(B) = 1/rcond**2
Call ztrcon('One norm', 'Upper', 'Non-unit', n, b, ldb, rcond, work, &
rwork, info)
! Print the reciprocal condition number of B
rcondb = rcond**2
Write (nout, *)
Write (nout, *) 'Estimate of reciprocal condition number for B'
Write (nout, 110) rcondb
Flush (nout)
! Get the machine precision, eps, and if rcondb is not less
! than eps**2, compute error estimates for the eigenvalues and
! eigenvectors
eps = epsilon(1.0E0_dp)
If (rcond>=eps) Then
! Call DDISNA to estimate reciprocal condition
! numbers for the eigenvectors of (A*B - lambda*I)
Call ddisna('Eigenvectors', n, n, w, rcondz, info)
! Compute the error estimates for the eigenvalues and
! eigenvectors
t1 = one/rcond
t2 = anorm*bnorm
Do i = 1, n
eerbnd(i) = (t2+abs(w(i))/rcondb)
zerbnd(i) = t1*(t2/rcondz(i)+t1)
End Do
! Print the approximate error bounds for the eigenvalues
! and vectors
Write (nout, *)
Write (nout, *) 'Error estimates (relative to machine precision)'
Write (nout, *) 'for the eigenvalues:'
Write (nout, 110) eerbnd(1:n)
Write (nout, *)
Write (nout, *) 'for the eigenvectors:'
Write (nout, 110) zerbnd(1:n)
Else
Write (nout, *)
Write (nout, *) 'B is very ill-conditioned, error ', &
'estimates have not been computed'
End If
Else If (info>n) Then
i = info - n
Write (nout, 120) 'The leading minor of order ', i, &
' of B is not positive definite'
Else
Write (nout, 130) 'Failure in ZHEGVD. INFO =', info
End If
100 Format (3X, (6F11.4))
110 Format (4X, 1P, 6E11.1)
120 Format (1X, A, I4, A)
130 Format (1X, A, I4)
End Program
