概要
本サンプルはFortran言語によりLAPACKルーチンZHBEVを利用するサンプルプログラムです。
エルミート帯行列のすべての固有値と固有ベクトルを求めます。
計算された固有値と固有ベクトルの誤差限界近似値も合わせて求めます。
入力データ
(本ルーチンの詳細はZHBEV のマニュアルページを参照)| このデータをダウンロード |
ZHBEV Example Program Data
5 2 :Values of N and KD
(1.0, 0.0) (2.0,-1.0) (3.0,-1.0)
(2.0, 0.0) (3.0,-2.0) (4.0,-2.0)
(3.0, 0.0) (4.0,-3.0) (5.0,-3.0)
(4.0, 0.0) (5.0,-4.0)
(5.0, 0.0) :End of matrix A
出力結果
(本ルーチンの詳細はZHBEV のマニュアルページを参照)| この出力例をダウンロード |
ZHBEV Example Program Results
Eigenvalues
-6.4185 -1.4094 1.4421 4.4856 16.9002
Eigenvectors
1 2 3 4 5
1 -0.2534 0.6367 -0.2560 0.0171 0.1051
-0.0538 0.0000 0.3721 0.5500 -0.0983
2 -0.0662 -0.2578 0.5344 -0.2608 0.2516
0.4301 0.2413 0.0000 0.4869 -0.1789
3 0.5274 -0.3039 -0.4245 -0.0399 0.4994
0.0000 -0.3481 0.0915 0.2142 -0.1513
4 0.1061 0.3450 0.4964 -0.0253 0.5611
-0.4981 -0.0832 -0.1546 -0.1700 0.0000
5 -0.4519 -0.2469 -0.1979 0.5614 0.4837
0.0424 0.2634 -0.1114 -0.0000 0.2509
Error estimate for the eigenvalues
3.8E-15
Error estimates for the eigenvectors
7.5E-16 1.3E-15 1.3E-15 1.2E-15 3.0E-16
ソースコード
(本ルーチンの詳細はZHBEV のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
| このソースコードをダウンロード |
Program zhbev_example
! ZHBEV Example Program Text
! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com
! .. Use Statements ..
Use blas_interfaces, Only: dznrm2
Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen
Use lapack_interfaces, Only: ddisna, zhbev
Use lapack_precision, Only: dp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = 'U'
! .. Local Scalars ..
Complex (Kind=dp) :: scal
Real (Kind=dp) :: eerrbd, eps
Integer :: i, ifail, info, j, k, kd, ldab, ldz, n
! .. Local Arrays ..
Complex (Kind=dp), Allocatable :: ab(:, :), work(:), z(:, :)
Real (Kind=dp), Allocatable :: rcondz(:), rwork(:), w(:), zerrbd(:)
! .. Intrinsic Procedures ..
Intrinsic :: abs, conjg, epsilon, max, maxloc, min
! .. Executable Statements ..
Write (nout, *) 'ZHBEV Example Program Results'
Write (nout, *)
! Skip heading in data file
Read (nin, *)
Read (nin, *) n, kd
ldab = kd + 1
ldz = n
Allocate (ab(ldab,n), work(n), z(ldz,n), rcondz(n), rwork(3*n-2), w(n), &
zerrbd(n))
! Read the upper or lower triangular part of the symmetric band
! matrix A from data file
If (uplo=='U') Then
Read (nin, *)((ab(kd+1+i-j,j),j=i,min(n,i+kd)), i=1, n)
Else If (uplo=='L') Then
Read (nin, *)((ab(1+i-j,j),j=max(1,i-kd),i), i=1, n)
End If
! Solve the band Hermitian eigenvalue problem
Call zhbev('Vectors', uplo, n, kd, ab, ldab, w, z, ldz, work, rwork, &
info)
If (info==0) Then
! Print solution
Write (nout, *) 'Eigenvalues'
Write (nout, 100) w(1:n)
Flush (nout)
! Normalize the eigenvectors, largest element real
Do i = 1, n
rwork(1:n) = abs(z(1:n,i))
k = maxloc(rwork(1:n), 1)
scal = conjg(z(k,i))/abs(z(k,i))/dznrm2(n, z(1,i), 1)
z(1:n, i) = z(1:n, i)*scal
End Do
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call nagf_file_print_matrix_complex_gen('General', ' ', n, n, z, ldz, &
'Eigenvectors', ifail)
! Get the machine precision, EPS and compute the approximate
! error bound for the computed eigenvalues. Note that for
! the 2-norm, max( abs(W(i)) ) = norm(A), and since the
! eigenvalues are returned in ascending order
! max( abs(W(i)) ) = max( abs(W(1)), abs(W(n)))
eps = epsilon(1.0E0_dp)
eerrbd = eps*max(abs(w(1)), abs(w(n)))
! Call DDISNA to estimate reciprocal condition
! numbers for the eigenvectors
Call ddisna('Eigenvectors', n, n, w, rcondz, info)
! Compute the error estimates for the eigenvectors
Do i = 1, n
zerrbd(i) = eerrbd/rcondz(i)
End Do
! Print the approximate error bounds for the eigenvalues
! and vectors
Write (nout, *)
Write (nout, *) 'Error estimate for the eigenvalues'
Write (nout, 110) eerrbd
Write (nout, *)
Write (nout, *) 'Error estimates for the eigenvectors'
Write (nout, 110) zerrbd(1:n)
Else
Write (nout, 120) 'Failure in ZHBEV. INFO =', info
End If
100 Format (3X, (8F8.4))
110 Format (4X, 1P, 6E11.1)
120 Format (1X, A, I4)
End Program
