Program zgeqp3_example
! ZGEQP3 Example Program Text
! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com
! .. Use Statements ..
Use blas_interfaces, Only: dznrm2, ztrsm
Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen_comp
Use lapack_interfaces, Only: zgeqp3, zunmqr
Use lapack_precision, Only: dp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Complex (Kind=dp), Parameter :: one = (1.0E0_dp, 0.0E0_dp)
Complex (Kind=dp), Parameter :: zero = (0.0E0_dp, 0.0E0_dp)
Integer, Parameter :: inc1 = 1, nb = 64, nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=dp) :: tol
Integer :: i, ifail, info, j, k, lda, ldb, lwork, m, n, nrhs
! .. Local Arrays ..
Complex (Kind=dp), Allocatable :: a(:, :), b(:, :), tau(:), work(:)
Real (Kind=dp), Allocatable :: rnorm(:), rwork(:)
Integer, Allocatable :: jpvt(:)
Character (1) :: clabs(1), rlabs(1)
! .. Intrinsic Procedures ..
Intrinsic :: abs
! .. Executable Statements ..
Write (nout, *) 'ZGEQP3 Example Program Results'
Write (nout, *)
! Skip heading in data file
Read (nin, *)
Read (nin, *) m, n, nrhs
lda = m
ldb = m
lwork = (n+1)*nb
Allocate (a(lda,n), b(ldb,nrhs), tau(n), work(lwork), rnorm(nrhs), &
rwork(2*n), jpvt(n))
! Read A and B from data file
Read (nin, *)(a(i,1:n), i=1, m)
Read (nin, *)(b(i,1:nrhs), i=1, m)
! Initialize JPVT to be zero so that all columns are free
jpvt(1:n) = 0
! Compute the QR factorization of A
Call zgeqp3(m, n, a, lda, jpvt, tau, work, lwork, rwork, info)
! Compute C = (C1) = (Q**H)*B, storing the result in B
! (C2)
Call zunmqr('Left', 'Conjugate Transpose', m, nrhs, n, a, lda, tau, b, &
ldb, work, lwork, info)
! Choose TOL to reflect the relative accuracy of the input data
tol = 0.01_dp
! Determine and print the rank, K, of R relative to TOL
loop: Do k = 1, n
If (abs(a(k,k))<=tol*abs(a(1,1))) Then
Exit loop
End If
End Do loop
k = k - 1
Write (nout, *) 'Tolerance used to estimate the rank of A'
Write (nout, 100) tol
Write (nout, *) 'Estimated rank of A'
Write (nout, 110) k
Write (nout, *)
Flush (nout)
! Compute least squares solutions by back-substitution in
! R(1:K,1:K)*Y = C1, storing the result in B
Call ztrsm('Left', 'Upper', 'No transpose', 'Non-Unit', k, nrhs, one, a, &
lda, b, ldb)
! Compute estimates of the square roots of the residual sums of
! squares (2-norm of each of the columns of C2)
Do j = 1, nrhs
rnorm(j) = dznrm2(m-k, b(k+1,j), inc1)
End Do
! Set the remaining elements of the solutions to zero (to give
! the basic solutions)
b(k+1:n, 1:nrhs) = zero
! Permute the least squares solutions stored in B to give X = P*Y
Do j = 1, nrhs
work(jpvt(1:n)) = b(1:n, j)
b(1:n, j) = work(1:n)
End Do
! Print least squares solutions
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call nagf_file_print_matrix_complex_gen_comp('General', ' ', n, nrhs, b, &
ldb, 'Bracketed', 'F7.4', 'Least squares solution(s)', 'Integer', &
rlabs, 'Integer', clabs, 80, 0, ifail)
! Print the square roots of the residual sums of squares
Write (nout, *)
Write (nout, *) 'Square root(s) of the residual sum(s) of squares'
Write (nout, 100) rnorm(1:nrhs)
100 Format (3X, 1P, 7E11.2)
110 Format (1X, I8)
End Program