概要
本サンプルはFortran言語によりLAPACKルーチンZGEESXを利用するサンプルプログラムです。
行列のSchur分解を行います。


入力データ
(本ルーチンの詳細はZGEESX のマニュアルページを参照)このデータをダウンロード |
ZGEESX Example Program Data 4 :Value of N (-3.97, -5.04) (-4.11, 3.70) (-0.34, 1.01) ( 1.29, -0.86) ( 0.34, -1.50) ( 1.52, -0.43) ( 1.88, -5.38) ( 3.36, 0.65) ( 3.31, -3.85) ( 2.50, 3.45) ( 0.88, -1.08) ( 0.64, -1.48) (-1.10, 0.82) ( 1.81, -1.59) ( 3.25, 1.33) ( 1.57, -3.44) :End of matrix A
出力結果
(本ルーチンの詳細はZGEESX のマニュアルページを参照)この出力例をダウンロード |
ZGEESX Example Program Results Matrix A 1 2 3 4 1 (-3.9700,-5.0400) (-4.1100, 3.7000) (-0.3400, 1.0100) ( 1.2900,-0.8600) 2 ( 0.3400,-1.5000) ( 1.5200,-0.4300) ( 1.8800,-5.3800) ( 3.3600, 0.6500) 3 ( 3.3100,-3.8500) ( 2.5000, 3.4500) ( 0.8800,-1.0800) ( 0.6400,-1.4800) 4 (-1.1000, 0.8200) ( 1.8100,-1.5900) ( 3.2500, 1.3300) ( 1.5700,-3.4400) Number of eigenvalues for which SELECT is true = 2 (dimension of invariant subspace) Selected eigenvalues 1 ( 7.9982,-0.9964) 2 ( 3.0023,-3.9998)
ソースコード
(本ルーチンの詳細はZGEESX のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
このソースコードをダウンロード |
! ZGEESX Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com Module zgeesx_mod ! ZGEESX Example Program Module: ! Parameters and User-defined Routines ! .. Use Statements .. Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Accessibility Statements .. Private Public :: select ! .. Parameters .. Integer, Parameter, Public :: nb = 64, nin = 5, nout = 6 Logical, Parameter, Public :: check_fac = .True., print_cond = .False. Contains Function select(w) ! Logical function select for use with ZGEESX (ZGEESX) ! Returns the value .TRUE. if the real part of the eigenvalue ! w is positive. ! .. Function Return Value .. Logical :: select ! .. Scalar Arguments .. Complex (Kind=dp), Intent (In) :: w ! .. Intrinsic Procedures .. Intrinsic :: real ! .. Executable Statements .. select = (real(w)>0._dp) Return End Function End Module Program zgeesx_example ! ZGEESX Example Main Program ! .. Use Statements .. Use blas_interfaces, Only: zgemm Use zgeesx_mod, Only: check_fac, nb, nin, nout, print_cond, select Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen_comp Use lapack_interfaces, Only: zgeesx, zlange Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Local Scalars .. Complex (Kind=dp) :: alpha, beta Real (Kind=dp) :: anorm, eps, norm, rconde, rcondv, tol Integer :: i, ifail, info, lda, ldc, ldd, ldvs, lwork, n, sdim ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: a(:, :), c(:, :), d(:, :), vs(:, :), & w(:), work(:) Complex (Kind=dp) :: dummy(1) Real (Kind=dp), Allocatable :: rwork(:) Logical, Allocatable :: bwork(:) Character (1) :: clabs(1), rlabs(1) ! .. Intrinsic Procedures .. Intrinsic :: cmplx, epsilon, max, nint, real ! .. Executable Statements .. Write (nout, *) 'ZGEESX Example Program Results' Write (nout, *) Flush (nout) ! Skip heading in data file Read (nin, *) Read (nin, *) n lda = n ldc = n ldd = n ldvs = n Allocate (a(lda,n), c(ldc,n), d(ldd,n), vs(ldvs,n), w(n), rwork(n), & bwork(n)) ! Use routine workspace query to get optimal workspace. lwork = -1 Call zgeesx('Vectors (Schur)', 'Sort', select, & 'Both reciprocal condition numbers', n, a, lda, sdim, w, vs, ldvs, & rconde, rcondv, dummy, lwork, rwork, bwork, info) ! Make sure that there is enough workspace for block size nb. lwork = max(n*(nb+1+n/2), nint(real(dummy(1)))) Allocate (work(lwork)) ! Read in the matrix A Read (nin, *)(a(i,1:n), i=1, n) ! Copy A into D d(1:n, 1:n) = a(1:n, 1:n) ! Print matrix A ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call nagf_file_print_matrix_complex_gen_comp('General', ' ', n, n, a, & lda, 'Bracketed', 'F7.4', 'Matrix A', 'Integer', rlabs, 'Integer', & clabs, 80, 0, ifail) Write (nout, *) Flush (nout) ! Find the Frobenius norm of A anorm = zlange('Frobenius', n, n, a, lda, rwork) ! Find the Schur factorization of A Call zgeesx('Vectors (Schur)', 'Sort', select, & 'Both reciprocal condition numbers', n, a, lda, sdim, w, vs, ldvs, & rconde, rcondv, work, lwork, rwork, bwork, info) If (info/=0 .And. info/=(n+2)) Then Write (nout, 170) 'Failure in ZGEESX. INFO =', info Go To 100 End If If (check_fac) Then ! Compute A - Z*T*Z^H from the factorization of A and store in matrix D alpha = cmplx(1, kind=dp) beta = cmplx(0, kind=dp) Call zgemm('N', 'N', n, n, n, alpha, vs, ldvs, a, lda, beta, c, ldc) alpha = cmplx(-1, kind=dp) beta = cmplx(1, kind=dp) Call zgemm('N', 'C', n, n, n, alpha, c, ldc, vs, ldvs, beta, d, ldd) ! Find norm of matrix D and print warning if it is too large norm = zlange('O', ldd, n, d, ldd, rwork) If (norm>epsilon(1.0E0_dp)**0.5_dp) Then Write (nout, *) 'Norm of A-(Z*T*Z^H) is much greater than 0.' Write (nout, *) 'Schur factorization has failed.' Go To 100 End If End If ! Print solution Write (nout, 110) 'Number of eigenvalues for which SELECT is true = ', & sdim, '(dimension of invariant subspace)' Write (nout, *) ! Print eigenvalues. Write (nout, *) 'Selected eigenvalues' Write (nout, 120)(i, w(i), i=1, sdim) Write (nout, *) If (info==(n+2)) Then Write (nout, 130) '***Note that rounding errors mean ', & 'that leading eigenvalues in the Schur form', & 'no longer satisfy SELECT = .TRUE.' Write (nout, *) End If Flush (nout) If (print_cond) Then ! Print out the reciprocal condition numbers Write (nout, 140) 'Reciprocal of projection norm onto the invariant', & 'subspace for the selected eigenvalues', 'RCONDE = ', rconde Write (nout, *) Write (nout, 150) & 'Reciprocal condition number for the invariant subspace', & 'RCONDV = ', rcondv ! Compute the machine precision eps = epsilon(1.0E0_dp) tol = eps*anorm ! Print out the approximate asymptotic error bound on the ! average absolute error of the selected eigenvalues given by ! eps*norm(A)/RCONDE Write (nout, *) Write (nout, 160) 'Approximate asymptotic error bound for selected ', & 'eigenvalues = ', tol/rconde ! Print out an approximate asymptotic bound on the maximum ! angular error in the computed invariant subspace given by ! eps*norm(A)/RCONDV Write (nout, 160) & 'Approximate asymptotic error bound for the invariant ', & 'subspace = ', tol/rcondv End If 100 Continue 110 Format (1X, A, I4, /, 1X, A) 120 Format (1X, I4, 2X, ' (', F7.4, ',', F7.4, ')', :) 130 Format (1X, 2A, /, 1X, A) 140 Format (1X, A, /, 1X, A, /, 1X, A, 1P, E8.1) 150 Format (1X, A, /, 1X, A, 1P, E8.1) 160 Format (1X, 2A, 1P, E8.1) 170 Format (1X, A, I4) End Program