概要
本サンプルはFortran言語によりLAPACKルーチンZGEESを利用するサンプルプログラムです。
行列のSchur分解を行います。
入力データ
(本ルーチンの詳細はZGEES のマニュアルページを参照)このデータをダウンロード |
ZGEES Example Program Data 4 :Value of N (-3.97, -5.04) (-4.11, 3.70) (-0.34, 1.01) ( 1.29, -0.86) ( 0.34, -1.50) ( 1.52, -0.43) ( 1.88, -5.38) ( 3.36, 0.65) ( 3.31, -3.85) ( 2.50, 3.45) ( 0.88, -1.08) ( 0.64, -1.48) (-1.10, 0.82) ( 1.81, -1.59) ( 3.25, 1.33) ( 1.57, -3.44) :End of matrix A
出力結果
(本ルーチンの詳細はZGEES のマニュアルページを参照)この出力例をダウンロード |
ZGEES Example Program Results Matrix A 1 2 3 4 1 (-3.9700,-5.0400) (-4.1100, 3.7000) (-0.3400, 1.0100) ( 1.2900,-0.8600) 2 ( 0.3400,-1.5000) ( 1.5200,-0.4300) ( 1.8800,-5.3800) ( 3.3600, 0.6500) 3 ( 3.3100,-3.8500) ( 2.5000, 3.4500) ( 0.8800,-1.0800) ( 0.6400,-1.4800) 4 (-1.1000, 0.8200) ( 1.8100,-1.5900) ( 3.2500, 1.3300) ( 1.5700,-3.4400) Eigenvalues 1 (-6.0004,-6.9998) 2 (-5.0000, 2.0060) 3 ( 7.9982,-0.9964) 4 ( 3.0023,-3.9998)
ソースコード
(本ルーチンの詳細はZGEES のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
このソースコードをダウンロード |
Module zgees_mod ! ZGEES Example Program Module: ! Parameters and User-defined Routines ! .. Implicit None Statement .. Implicit None ! .. Accessibility Statements .. Private Public :: select Contains Function select(w) ! .. Use Statements .. Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Function Return Value .. Logical :: select ! .. Scalar Arguments .. Complex (Kind=dp), Intent (In) :: w ! .. Intrinsic Procedures .. Intrinsic :: real ! .. Executable Statements .. Continue ! Dummy function - it is not called by ZGEES when sorting is not required. select = (real(w)>0._dp) Return End Function End Module Program zgees_example ! ZGEES Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use blas_interfaces, Only: zgemm Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen_comp Use lapack_interfaces, Only: zgees, zlange Use lapack_precision, Only: dp Use zgees_mod, Only: select ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Integer, Parameter :: nb = 64, nin = 5, nout = 6 ! .. Local Scalars .. Complex (Kind=dp) :: alpha, beta Real (Kind=dp) :: norm Integer :: i, ifail, info, lda, ldc, ldd, ldvs, lwork, n, sdim ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: a(:, :), c(:, :), d(:, :), vs(:, :), & w(:), work(:) Complex (Kind=dp) :: wdum(1) Real (Kind=dp), Allocatable :: rwork(:) Logical :: dummy(1) Character (1) :: clabs(1), rlabs(1) ! .. Intrinsic Procedures .. Intrinsic :: cmplx, epsilon, max, nint, real ! .. Executable Statements .. Write (nout, *) 'ZGEES Example Program Results' Write (nout, *) Flush (nout) ! Skip heading in data file Read (nin, *) Read (nin, *) n lda = n ldc = n ldd = n ldvs = n Allocate (a(lda,n), vs(ldvs,n), c(ldc,n), d(ldd,n), w(n), rwork(n)) ! Use routine workspace query to get optimal workspace. lwork = -1 Call zgees('Vectors (Schur)', 'No sort', select, n, a, lda, sdim, w, vs, & ldvs, wdum, lwork, rwork, dummy, info) ! Make sure that there is enough workspace for block size nb. lwork = max((nb+1)*n, nint(real(wdum(1)))) Allocate (work(lwork)) ! Read in the matrix A Read (nin, *)(a(i,1:n), i=1, n) ! Copy A into D d(1:n, 1:n) = a(1:n, 1:n) ! Print matrix A ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call nagf_file_print_matrix_complex_gen_comp('General', ' ', n, n, a, & lda, 'Bracketed', 'F7.4', 'Matrix A', 'Integer', rlabs, 'Integer', & clabs, 80, 0, ifail) Write (nout, *) Flush (nout) ! Find the Schur factorization of A Call zgees('Vectors (Schur)', 'No sort', select, n, a, lda, sdim, w, vs, & ldvs, work, lwork, rwork, dummy, info) If (info>0) Then Write (nout, 100) 'Failure in ZGEES. INFO =', info Else ! Compute A - Z*T*Z^H from the factorization of A and store in matrix D alpha = cmplx(1, kind=dp) beta = cmplx(0, kind=dp) Call zgemm('N', 'N', n, n, n, alpha, vs, ldvs, a, lda, beta, c, ldc) alpha = cmplx(-1, kind=dp) beta = cmplx(1, kind=dp) Call zgemm('N', 'C', n, n, n, alpha, c, ldc, vs, ldvs, beta, d, ldd) ! Find norm of matrix D and print warning if it is too large norm = zlange('O', ldd, n, d, ldd, rwork) If (norm>epsilon(1.0E0_dp)**0.5_dp) Then Write (nout, *) 'Norm of A-(Z*T*Z^H) is much greater than 0.' Write (nout, *) 'Schur factorization has failed.' Else ! Print eigenvalues. Write (nout, *) 'Eigenvalues' Write (nout, 110)(i, w(i), i=1, n) End If End If 100 Format (1X, A, I4) 110 Format (1X, I4, 2X, ' (', F7.4, ',', F7.4, ')', :) End Program