! DTGEVC Example Program Text
! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com
Module dtgevc_mod
! DTGEVC Example Program Module:
! Parameters and User-defined Routines
! .. Use Statements ..
Use lapack_precision, Only: dp
! .. Implicit None Statement ..
Implicit None
! .. Accessibility Statements ..
Private
Public :: normalize
! .. Parameters ..
Real (Kind=dp), Parameter, Public :: one = 1.0_dp
Real (Kind=dp), Parameter, Public :: zero = 0.0_dp
Integer, Parameter, Public :: nin = 5, nout = 6
Contains
Subroutine normalize(n, alphai, v, ldv)
! .. Use Statements ..
Use blas_interfaces, Only: dnrm2
! .. Implicit None Statement ..
Implicit None
! .. Scalar Arguments ..
Integer, Intent (In) :: ldv, n
! .. Array Arguments ..
Real (Kind=dp), Intent (In) :: alphai(n)
Real (Kind=dp), Intent (Inout) :: v(ldv, *)
! .. Local Scalars ..
Real (Kind=dp) :: a, b, r, r1, r2, v1, v2
Integer :: i, j, k
! .. Intrinsic Procedures ..
Intrinsic :: sqrt
! .. Executable Statements ..
Do j = 1, n
If (alphai(j)>=0.0_dp) Then
If (alphai(j)==0.0_dp) Then
! Real eigenvalue
! The 2-norm of Q is calculated using dnrm2.
r = dnrm2(n, v(1,j), 1)
v(1:n, j) = v(1:n, j)/r
Else
! Complex eigenvalue (positive imaginary part)
! Make largest element real and positive
r1 = dnrm2(n, v(1,j), 1)
r2 = dnrm2(n, v(1,j+1), 1)
r1 = sqrt(r1**2+r2**2)
r2 = -1.0_dp
Do i = 1, n
r = v(i, j)**2 + v(i, j+1)**2
If (r>r2) Then
r2 = r
k = i
End If
End Do
r = r1*sqrt(r2)
a = v(k, j)/r
b = v(k, j+1)/r
Do i = 1, n
v1 = v(i, j)
v2 = v(i, j+1)
v(i, j) = v1*a + v2*b
v(i, j+1) = v2*a - v1*b
End Do
End If
End If
End Do
End Subroutine
End Module
Program dtgevc_example
! DTGEVC Example Main Program
! .. Use Statements ..
Use dtgevc_mod, Only: nin, normalize, nout, one, zero
Use lapack_example_aux, Only: nagf_file_print_matrix_real_gen_comp
Use lapack_interfaces, Only: dgeqrf, dggbak, dggbal, dgghrd, dhgeqz, &
dlacpy, dlaset, dorgqr, dormqr, dtgevc
Use lapack_precision, Only: dp
! .. Implicit None Statement ..
Implicit None
! .. Local Scalars ..
Integer :: i, icols, ifail, ihi, ilo, info, irows, jwork, lda, ldb, &
ldvl, ldvr, lwork, m, n
Logical :: ileft, iright
Character (1) :: compq, compz, howmny, job, side
! .. Local Arrays ..
Real (Kind=dp), Allocatable :: a(:, :), alphai(:), alphar(:), b(:, :), &
beta(:), lscale(:), rscale(:), tau(:), vl(:, :), vr(:, :), work(:)
Logical, Allocatable :: select(:)
Character (0) :: clabs(1), rlabs(1)
! .. Intrinsic Procedures ..
Intrinsic :: nint
! .. Executable Statements ..
Write (nout, *) 'DTGEVC Example Program Results'
Flush (nout)
! ileft is TRUE if left eigenvectors are required
! iright is TRUE if right eigenvectors are required
ileft = .True.
iright = .True.
! Skip heading in data file
Read (nin, *)
Read (nin, *) n
lda = n
ldb = n
ldvl = n
ldvr = n
lwork = 6*n
Allocate (a(lda,n), alphai(n), alphar(n), b(ldb,n), beta(n), lscale(n), &
rscale(n), tau(n), vl(ldvl,ldvl), vr(ldvr,ldvr), work(lwork), &
select(n))
! READ matrix A from data file
Read (nin, *)(a(i,1:n), i=1, n)
! READ matrix B from data file
Read (nin, *)(b(i,1:n), i=1, n)
! Balance matrix pair (A,B)
job = 'B'
Call dggbal(job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale, work, &
info)
! Matrix A after balancing
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call nagf_file_print_matrix_real_gen_comp('General', ' ', n, n, a, lda, &
'F8.4', 'Matrix A after balancing', 'I', rlabs, 'I', clabs, 80, 0, &
ifail)
Write (nout, *)
Flush (nout)
! Matrix B after balancing
ifail = 0
Call nagf_file_print_matrix_real_gen_comp('General', ' ', n, n, b, ldb, &
'F8.4', 'Matrix B after balancing', 'I', rlabs, 'I', clabs, 80, 0, &
ifail)
Write (nout, *)
Flush (nout)
! Reduce B to triangular form using QR
irows = ihi + 1 - ilo
icols = n + 1 - ilo
Call dgeqrf(irows, icols, b(ilo,ilo), ldb, tau, work, lwork, info)
! Apply the orthogonal transformation to matrix A
Call dormqr('L', 'T', irows, icols, irows, b(ilo,ilo), ldb, tau, &
a(ilo,ilo), lda, work, lwork, info)
! Initialize VL (if left eigenvectors are required)
If (ileft) Then
Call dlaset('General', n, n, zero, one, vl, ldvl)
Call dlacpy('Lower', irows-1, irows-1, b(ilo+1,ilo), ldb, &
vl(ilo+1,ilo), ldvl)
Call dorgqr(irows, irows, irows, vl(ilo,ilo), ldvl, tau, work, lwork, &
info)
End If
! Initialize VR (if right eigenvectors are required)
If (iright) Then
Call dlaset('General', n, n, zero, one, vr, ldvr)
End If
! Compute the generalized Hessenberg form of (A,B)
compq = 'V'
compz = 'V'
Call dgghrd(compq, compz, n, ilo, ihi, a, lda, b, ldb, vl, ldvl, vr, &
ldvr, info)
! Matrix A in generalized Hessenberg form
ifail = 0
Call nagf_file_print_matrix_real_gen_comp('General', ' ', n, n, a, lda, &
'F8.4', 'Matrix A in Hessenberg form', 'I', rlabs, 'I', clabs, 80, 0, &
ifail)
Write (nout, *)
Flush (nout)
! Matrix B in generalized Hessenberg form
ifail = 0
Call nagf_file_print_matrix_real_gen_comp('General', ' ', n, n, b, ldb, &
'F8.4', 'Matrix B in Hessenberg form', 'I', rlabs, 'I', clabs, 80, 0, &
ifail)
! Routine DHGEQZ
! Workspace query: jwork = -1
jwork = -1
job = 'S'
Call dhgeqz(job, compq, compz, n, ilo, ihi, a, lda, b, ldb, alphar, &
alphai, beta, vl, ldvl, vr, ldvr, work, jwork, info)
Write (nout, *)
Write (nout, 100) nint(work(1))
Write (nout, 110) lwork
Write (nout, *)
Write (nout, 120)
Write (nout, 130)
! Compute the generalized Schur form
! if the workspace lwork is adequate
! The Schur form also gives parameters
! required to compute generalized eigenvalues
If (nint(work(1))<=lwork) Then
Call dhgeqz(job, compq, compz, n, ilo, ihi, a, lda, b, ldb, alphar, &
alphai, beta, vl, ldvl, vr, ldvr, work, lwork, info)
! Print the generalized eigenvalues
Do i = 1, n
If (beta(i)/=0.0E0_dp) Then
Write (nout, 140) i, '(', alphar(i)/beta(i), ',', &
alphai(i)/beta(i), ')'
Else
Write (nout, 130) i
End If
End Do
Write (nout, *)
Flush (nout)
! Compute left and right generalized eigenvectors
! of the balanced matrix
howmny = 'B'
If (ileft .And. iright) Then
side = 'B'
Else If (ileft) Then
side = 'L'
Else If (iright) Then
side = 'R'
End If
Call dtgevc(side, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr, &
ldvr, n, m, work, info)
If (iright) Then
! Compute right eigenvectors of the original matrix
job = 'B'
side = 'R'
Call dggbak(job, side, n, ilo, ihi, lscale, rscale, n, vr, ldvr, &
info)
Call normalize(n, alphai, vr, ldvr)
! Print the right eigenvectors
ifail = 0
Call nagf_file_print_matrix_real_gen_comp('General', ' ', n, n, vr, &
ldvr, 'F8.4', 'Right eigenvectors', 'I', rlabs, 'I', clabs, 80, 0, &
ifail)
Write (nout, *)
Flush (nout)
End If
! Compute left eigenvectors of the original matrix
If (ileft) Then
job = 'B'
side = 'L'
Call dggbak(job, side, n, ilo, ihi, lscale, rscale, n, vl, ldvl, &
info)
Call normalize(n, alphai, vl, ldvl)
! Print the left eigenvectors
ifail = 0
Call nagf_file_print_matrix_real_gen_comp('General', ' ', n, n, vl, &
ldvl, 'F8.4', 'Left eigenvectors', 'I', rlabs, 'I', clabs, 80, 0, &
ifail)
End If
Else
Write (nout, 150)
End If
100 Format (1X, 'Minimal required LWORK = ', I6)
110 Format (1X, 'Actual value of LWORK = ', I6)
120 Format (1X, 'Generalized eigenvalues')
130 Format (1X, I4, 5X, 'Infinite eigenvalue')
140 Format (1X, I4, 5X, A, F7.3, A, F7.3, A)
150 Format (1X, 'Insufficient workspace for array WORK', /, ' in DHGEQZ/', &
'DHGEQZ')
End Program