実一般化対称固有値問題: 対称定値一般化行列 : (分割統治法)

LAPACKサンプルソースコード : 使用ルーチン名:DSYGVD

概要

本サンプルはFortran言語によりLAPACKルーチンDSYGVDを利用するサンプルプログラムです。

一般化対称固有値問題 $ A B x = \lambda x$の全ての固有値と固有ベクトルを求めます。

\begin{displaymath}
A = \left(
\begin{array}{rrrr}
0.24 & 0.39 & 0.42 & -0.16...
...6 & 0.34 \\
-0.10 & 1.09 & 0.34 & 1.18
\end{array} \right),
\end{displaymath}

$ B$の条件数の推定値と計算された固有値と固有ベクトルの誤差限界の近似値も合わせて求めます。

DSYGVの例題は一般化対称固有値問題 $ A x = \lambda B x$の解き方を示します。

入力データ

(本ルーチンの詳細はDSYGVD のマニュアルページを参照)

このデータをダウンロード
DSYGVD Example Program Data

  4                         :Value of N

  0.24   0.39   0.42  -0.16
        -0.11   0.79   0.63
               -0.25   0.48
                      -0.03 :End of matrix A

  4.16  -3.12   0.56  -0.10
         5.03  -0.83   1.09
                0.76   0.34
                       1.18 :End of matrix B

出力結果

(本ルーチンの詳細はDSYGVD のマニュアルページを参照)

この出力例をダウンロード
 DSYGVD Example Program Results

 Eigenvalues
       -3.5411    -0.3347     0.2983     2.2544
 Eigenvectors
             1          2          3          4
 1     -0.0356    -0.1039    -0.7459     0.1909
 2      0.3809     0.4322    -0.7845     0.3540
 3     -0.2943     1.5644    -0.7144     0.5665
 4     -0.3186    -1.0647     1.1184     0.3859

 Estimate of reciprocal condition number for B
        5.8E-03

 Error estimates for the eigenvalues
        1.4E-13    1.7E-14    1.6E-14    9.1E-14

 Error estimates for the eigenvectors
        5.6E-14    1.3E-13    1.3E-13    6.8E-14

ソースコード

(本ルーチンの詳細はDSYGVD のマニュアルページを参照)

※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。


このソースコードをダウンロード
    Program dsygvd_example

!     DSYGVD Example Program Text

!     Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com

!     .. Use Statements ..
      Use lapack_example_aux, Only: nagf_blas_damax_val, &
        nagf_file_print_matrix_real_gen
      Use lapack_interfaces, Only: ddisna, dlansy, dsygvd, dtrcon
      Use lapack_precision, Only: dp
!     .. Implicit None Statement ..
      Implicit None
!     .. Parameters ..
      Real (Kind=dp), Parameter :: one = 1.0E+0_dp
      Real (Kind=dp), Parameter :: zero = 0.0_dp
      Integer, Parameter :: nb = 64, nin = 5, nout = 6
!     .. Local Scalars ..
      Real (Kind=dp) :: anorm, bnorm, eps, r, rcond, rcondb, t1, t2, t3
      Integer :: i, ifail, info, k, lda, ldb, liwork, lwork, n
!     .. Local Arrays ..
      Real (Kind=dp), Allocatable :: a(:, :), b(:, :), eerbnd(:), rcondz(:), &
        w(:), work(:), zerbnd(:)
      Real (Kind=dp) :: dummy(1)
      Integer :: idum(1)
      Integer, Allocatable :: iwork(:)
!     .. Intrinsic Procedures ..
      Intrinsic :: abs, epsilon, max, nint
!     .. Executable Statements ..
      Write (nout, *) 'DSYGVD Example Program Results'
      Write (nout, *)
!     Skip heading in data file
      Read (nin, *)
      Read (nin, *) n
      lda = n
      ldb = n
      Allocate (a(lda,n), b(ldb,n), eerbnd(n), rcondz(n), w(n), zerbnd(n))

!     Use routine workspace query to get optimal workspace.
      lwork = -1
      liwork = -1
      Call dsygvd(2, 'Vectors', 'Upper', n, a, lda, b, ldb, w, dummy, lwork, &
        idum, liwork, info)

!     Make sure that there is enough workspace for block size nb.
      lwork = max(1+(nb+6+2*n)*n, nint(dummy(1)))
      liwork = max(3+5*n, idum(1))
      Allocate (work(lwork), iwork(liwork))

!     Read the upper triangular parts of the matrices A and B

      Read (nin, *)(a(i,i:n), i=1, n)
      Read (nin, *)(b(i,i:n), i=1, n)

!     Compute the one-norms of the symmetric matrices A and B

      anorm = dlansy('One norm', 'Upper', n, a, lda, work)
      bnorm = dlansy('One norm', 'Upper', n, b, ldb, work)

!     Solve the generalized symmetric eigenvalue problem
!     A*B*x = lambda*x (ITYPE = 2)

      Call dsygvd(2, 'Vectors', 'Upper', n, a, lda, b, ldb, w, work, lwork, &
        iwork, liwork, info)

      If (info==0) Then

!       Print solution

        Write (nout, *) 'Eigenvalues'
        Write (nout, 100) w(1:n)
        Flush (nout)

!       Normalize the eigenvectors, largest positive
        Do i = 1, n
          Call nagf_blas_damax_val(n, a(1,i), 1, k, r)
          If (a(k,i)<zero) Then
            a(1:n, i) = -a(1:n, i)
          End If
        End Do

!       ifail: behaviour on error exit
!              =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
        ifail = 0
        Call nagf_file_print_matrix_real_gen('General', ' ', n, n, a, lda, &
          'Eigenvectors', ifail)

!       Call DTRCON to estimate the reciprocal condition
!       number of the Cholesky factor of B.  Note that:
!       cond(B) = 1/RCOND**2

        Call dtrcon('One norm', 'Upper', 'Non-unit', n, b, ldb, rcond, work, &
          iwork, info)

!       Print the reciprocal condition number of B

        rcondb = rcond**2
        Write (nout, *)
        Write (nout, *) 'Estimate of reciprocal condition number for B'
        Write (nout, 110) rcondb
        Flush (nout)

!       Get the machine precision, EPS, and if RCONDB is not less
!       than EPS**2, compute error estimates for the eigenvalues and
!       eigenvectors

        eps = epsilon(1.0E0_dp)
        If (rcond>=eps) Then

!         Call DDISNA to estimate reciprocal condition
!         numbers for the eigenvectors of (A*B - lambda*I)

          Call ddisna('Eigenvectors', n, n, w, rcondz, info)

!         Compute the error estimates for the eigenvalues and
!         eigenvectors

          t1 = one/rcond
          t2 = eps*t1
          t3 = anorm*bnorm
          Do i = 1, n
            eerbnd(i) = eps*(t3+abs(w(i))/rcondb)
            zerbnd(i) = t2*(t3/rcondz(i)+t1)
          End Do

!         Print the approximate error bounds for the eigenvalues
!         and vectors

          Write (nout, *)
          Write (nout, *) 'Error estimates for the eigenvalues'
          Write (nout, 110) eerbnd(1:n)
          Write (nout, *)
          Write (nout, *) 'Error estimates for the eigenvectors'
          Write (nout, 110) zerbnd(1:n)
        Else
          Write (nout, *)
          Write (nout, *) 'B is very ill-conditioned, error ', &
            'estimates have not been computed'
        End If
      Else If (info>n .And. info<=2*n) Then
        i = info - n
        Write (nout, 120) 'The leading minor of order ', i, &
          ' of B is not positive definite'
      Else
        Write (nout, 130) 'Failure in DSYGVD. INFO =', info
      End If

100   Format (3X, (6F11.4))
110   Format (4X, 1P, 6E11.1)
120   Format (1X, A, I4, A)
130   Format (1X, A, I4)
    End Program


ご案内
関連情報
Privacy Policy  /  Trademarks