概要
本サンプルはFortran言語によりLAPACKルーチンDSYEVを利用するサンプルプログラムです。
対称行列のすべての固有値と固有ベクトルを求めます。
計算された固有値と固有ベクトルの誤差限界近似値も合わせて求めます。
入力データ
(本ルーチンの詳細はDSYEV のマニュアルページを参照)| このデータをダウンロード |
DSYEV Example Program Data
4 :Value of N
1.0 2.0 3.0 4.0
2.0 3.0 4.0
3.0 4.0
4.0 :End of matrix A
出力結果
(本ルーチンの詳細はDSYEV のマニュアルページを参照)| この出力例をダウンロード |
DSYEV Example Program Results
Eigenvalues
-2.0531 -0.5146 -0.2943 12.8621
Eigenvectors
1 2 3 4
1 0.7003 -0.5144 -0.2767 0.4103
2 0.3592 0.4851 0.6634 0.4422
3 -0.1569 0.5420 -0.6504 0.5085
4 -0.5965 -0.4543 0.2457 0.6144
Error estimate for the eigenvalues
2.9E-15
Error estimates for the eigenvectors
1.9E-15 1.3E-14 1.3E-14 2.2E-16
ソースコード
(本ルーチンの詳細はDSYEV のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
| このソースコードをダウンロード |
Program dsyev_example
! DSYEV Example Program Text
! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com
! .. Use Statements ..
Use lapack_example_aux, Only: nagf_blas_damax_val, &
nagf_file_print_matrix_real_gen
Use lapack_interfaces, Only: ddisna, dsyev
Use lapack_precision, Only: dp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Real (Kind=dp), Parameter :: zero = 0.0_dp
Integer, Parameter :: nb = 64, nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=dp) :: eerrbd, eps, r
Integer :: i, ifail, info, k, lda, lwork, n
! .. Local Arrays ..
Real (Kind=dp), Allocatable :: a(:, :), rcondz(:), w(:), work(:), &
zerrbd(:)
Real (Kind=dp) :: dummy(1)
! .. Intrinsic Procedures ..
Intrinsic :: abs, epsilon, max, nint
! .. Executable Statements ..
Write (nout, *) 'DSYEV Example Program Results'
Write (nout, *)
! Skip heading in data file
Read (nin, *)
Read (nin, *) n
lda = n
Allocate (a(lda,n), rcondz(n), w(n), zerrbd(n))
! Use routine workspace query to get optimal workspace.
lwork = -1
Call dsyev('Vectors', 'Upper', n, a, lda, w, dummy, lwork, info)
! Make sure that there is enough workspace for block size nb.
lwork = max((nb+2)*n, nint(dummy(1)))
Allocate (work(lwork))
! Read the upper triangular part of the matrix A from data file
Read (nin, *)(a(i,i:n), i=1, n)
! Solve the symmetric eigenvalue problem
Call dsyev('Vectors', 'Upper', n, a, lda, w, work, lwork, info)
If (info==0) Then
! Print solution
Write (nout, *) 'Eigenvalues'
Write (nout, 100) w(1:n)
Flush (nout)
! Normalize the eigenvectors: largest element positive
Do i = 1, n
Call nagf_blas_damax_val(n, a(1,i), 1, k, r)
If (a(k,i)<zero) Then
a(1:n, i) = -a(1:n, i)
End If
End Do
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call nagf_file_print_matrix_real_gen('General', ' ', n, n, a, lda, &
'Eigenvectors', ifail)
! Get the machine precision, EPS and compute the approximate
! error bound for the computed eigenvalues. Note that for
! the 2-norm, max( abs(W(i)) ) = norm(A), and since the
! eigenvalues are returned in ascending order
! max( abs(W(i)) ) = max( abs(W(1)), abs(W(n)))
eps = epsilon(1.0E0_dp)
eerrbd = eps*max(abs(w(1)), abs(w(n)))
! Call DDISNA to estimate reciprocal condition
! numbers for the eigenvectors
Call ddisna('Eigenvectors', n, n, w, rcondz, info)
! Compute the error estimates for the eigenvectors
Do i = 1, n
zerrbd(i) = eerrbd/rcondz(i)
End Do
! Print the approximate error bounds for the eigenvalues
! and vectors
Write (nout, *)
Write (nout, *) 'Error estimate for the eigenvalues'
Write (nout, 110) eerrbd
Write (nout, *)
Write (nout, *) 'Error estimates for the eigenvectors'
Write (nout, 110) zerrbd(1:n)
Else
Write (nout, 120) 'Failure in DSYEV. INFO =', info
End If
100 Format (3X, (8F8.4))
110 Format (4X, 1P, 6E11.1)
120 Format (1X, A, I4)
End Program
