Program dorghr_example
! DORGHR Example Program Text
! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com
! .. Use Statements ..
Use blas_interfaces, Only: dgemm
Use lapack_example_aux, Only: nagf_file_print_matrix_real_gen
Use lapack_interfaces, Only: dgehrd, dhseqr, dlange, dorghr
Use lapack_precision, Only: dp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=dp) :: alpha, beta, norm
Integer :: i, ifail, info, lda, ldc, ldd, ldz, lwork, n
! .. Local Arrays ..
Real (Kind=dp), Allocatable :: a(:, :), c(:, :), d(:, :), tau(:), wi(:), &
work(:), wr(:), z(:, :)
! .. Intrinsic Procedures ..
Intrinsic :: epsilon
! .. Executable Statements ..
Write (nout, *) 'DORGHR Example Program Results'
! Skip heading in data file
Read (nin, *)
Read (nin, *) n
lda = n
ldz = n
ldc = n
ldd = n
lwork = 64*(n-1)
Allocate (a(lda,n), c(ldc,n), d(ldd,n), tau(n), wi(n), work(lwork), &
wr(n), z(ldz,n))
! Read A from data file
Read (nin, *)(a(i,1:n), i=1, n)
! Copy A into D.
d(1:n, 1:n) = a(1:n, 1:n)
Write (nout, *)
Flush (nout)
! Print Matrix A
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call nagf_file_print_matrix_real_gen('General', ' ', n, n, a, lda, &
'Matrix A', ifail)
Write (nout, *)
Flush (nout)
! Reduce A to upper Hessenberg form H = (Q**T)*A*Q
Call dgehrd(n, 1, n, a, lda, tau, work, lwork, info)
! Copy A into Z
z(1:n, 1:n) = a(1:n, 1:n)
! Form Q explicitly, storing the result in Z
Call dorghr(n, 1, n, z, ldz, tau, work, lwork, info)
! Calculate the Schur factorization of H = Y*T*(Y**T) and form
! Q*Y explicitly, storing the result in Z
! Note that A = Z*T*(Z**T), where Z = Q*Y
Call dhseqr('Schur form', 'Vectors', n, 1, n, a, lda, wr, wi, z, ldz, &
work, lwork, info)
! Compute A - Z*T*Z^T from the factorization of A and store in matrix D.
alpha = 1.0_dp
beta = 0.0_dp
Call dgemm('N', 'N', n, n, n, alpha, z, ldz, a, lda, beta, c, ldc)
alpha = -1.0_dp
beta = 1.0_dp
Call dgemm('N', 'T', n, n, n, alpha, c, ldc, z, ldz, beta, d, ldd)
! Find norm of difference matrix D and warn if it is too large;
norm = dlange('O', ldd, n, d, ldd, work)
If (norm>epsilon(1.0E0_dp)**0.8_dp) Then
Write (nout, *) 'Norm of A-(Z*T*Z^T) is much greater than 0.'
Write (nout, *) 'Schur factorization has failed.'
Else
! Print eigenvalues.
Write (nout, *) 'Eigenvalues'
Write (nout, 100)(' (', wr(i), ',', wi(i), ')', i=1, n)
End If
100 Format (1X, A, F8.4, A, F8.4, A)
End Program