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1 Description of the model

We are interested in finding an optimal shape of the back wall of a paper
making machine header (see Figure 1). The header is the first component in
a paper making machine headbox. Its function is to deliver the fluid (water)
and wood fibres equally in the cross direction of a paper making machine
in order to produce good quality paper. The cost function to be minimized
reads:

J(α, v(α), p(α)) :=

∫
Γout

|v2(α) − vopt|2,

where α is a function describing the shape of the back wall, (v(α), p(α)) is
the velocity and the pressure of the mixture and vopt is a given target velocity
on the outlet Γout.

The header domain Ω(α) is of the form

Ω(α) =
{

x = (x1, x2) ∈ R
2; 0 < x1 < L, 0 < x2 < α(x1)

}
.
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Figure 1: Geometry of the header Ω(α).
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We say that Ω(α) is an admissible domain iff α ∈ Uad, where

Uad =
{
α ∈ C0,1([0, L]); αmin ≤ α ≤ αmax,

α|[0,L1] = H1, α|[L1+L2,L] = H2, |α′| ≤ γ a.e. in [0, L]
}
, (1)

and L := L1 + L2 + L3.
The motion of the mixture is modelled using the generalized Navier-Stokes

system
− div T(p, D(v)) + ρ div(v ⊗ v) = 0

div v = 0

}
in Ω(α). (2)

Here v := v(α) means the velocity, p := p(α) the pressure, ρ is the density
of the fluid and the stress tensor T is defined by the following formulae:

T(p, D(v)) = −pI + 2µ(|D(v)|)D(v),

µ(|D(v)|) := µ0 + µt(|D(v)|) = µ0 + ρl2m,α|D(v)|, µ0 > 0,

where µ0 is a constant laminar viscosity and µt(|D(v)|) stands for a turbulent
viscosity. The function lm,α represents a mixing length in the algebraic model
of turbulence and it has the following form:

lm,α(x) =
1

2
α(x1)

(
0.14 − 0.08

(
1 − 2dα(x)

α(x1)

)2

− 0.06

(
1 − 2dα(x)

α(x1)

)4
)

,

where dα(x) = min {x2, α(x1) − x2} , x ∈ Ω(α). The following boundary
conditions are assumed:

v = 0 on Γf ∪ Γα,
v = vD on ΓD,

v · τ = v1 = 0 on Γout,
T22 := Tν · ν = −σ|v2|v2 on Γout,

(3)

where ν, τ stands for the unit normal, tangential vector to Γout, respectively
and σ > 0 is a given suction coefficient. The condition (3)4 originates in the
homogenization of a complex geometry.

2 Approximation and test results

The state problem (2) is discretized using the finite element method on a
triangular mesh. In order to compute the gradient of J with respect to
α, the adjoint equation technique is applied to the discrete state problem.
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Figure 2: Initial and optimal shape.

All necessary partial derivatives are provided with help of the automatic
differentiation. The function α is approximated by a Bézier function αM of
order M . Admissibility of αM is imposed by simple lower and upper bounds
only.

Finally, our problem can be formulated as a nonlinear, bounds-constrained
programming problem for which the cost function value and gradient are
available. We used the NAG C library, routine e04wdc [1] to solve this
problem, using the default parameter values.

In the test computation we used the following dimensionless parameters:
L1 = 1.0, L2 = 8.0, L3 = 0.5, H1 = 1.0, H2 = 0.1, αmin = H2, αmax = H1,
µ0 = 10−3, ρ = 103, σ = 103, the inlet velocity vD|{0}×(0,H1) = (4(1 − (2x2

H1
−

1)8), 0), vD|{L}×(0,H2) = (1 − (2x2

H2
− 1)8, 0). The order of the Bézier function

αM was set M = 20, and the target velocity vopt := −0.433.
The optimization started from the traditional linearly tapering shape.

The initial and optimal shape (found by e04wdc) is depicted in Figure 2 and
the initial and optimal velocity profile v2|Γout is depicted in Figure 3.

The NAG routine found the solution after 73 major iterations, yielding
the optimality error smaller than 10−6.
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Figure 3: Initial and optimal velocity profile.

3 Conclusion

The NAG optimization routine shows itself to fully meet the demands of the
problem.
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