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1 Description of the model

We are interested in finding an optimal shape of the back wall of a paper
making machine header (see Figure 1). The header is the first component in
a paper making machine headbox. Its function is to deliver the fluid (water)
and wood fibres equally in the cross direction of a paper making machine
in order to produce good quality paper. The cost function to be minimized
reads:

J(a,v(a), pla)) = / 02(00) — vopel?,

where « is a function describing the shape of the back wall, (v(«),p(a)) is
the velocity and the pressure of the mixture and v, is a given target velocity
on the outlet I'yy.

The header domain Q(«) is of the form

Q) = {93 = (1, 29) ER}0< 2, < L,0< 19 < a(xl)}.
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Figure 1: Geometry of the header Q(«).



We say that 2(a) is an admissible domain iff a € U, 4, where

uad = {O[ € 6071([07 L])u Qmjin S « S AOmaz,
Q|0,Ly] = Hy, Q[Ly+La L) = H, ‘Ct/’ < v a.e. in [O,L]}, (1)

and L := L1 + L2 + Lg.
The motion of the mixture is modelled using the generalized Navier-Stokes

system
—div T(p,D(v)) 4+ pdiviv @wv) = 0 .
dive — 0 (1 Qa). (2)

Here v := v(a)) means the velocity, p := p(«) the pressure, p is the density
of the fluid and the stress tensor T is defined by the following formulae:

T(p, D(v)) = —pl + 2u(|D(v)|)D(v),

u(ID(v)[) = po + pe([D(V)]) = po + pliy, o[ D(V)], 10 > 0,

where fi is a constant laminar viscosity and p;(|]D(v)|) stands for a turbulent
viscosity. The function /,, , represents a mixing length in the algebraic model
of turbulence and it has the following form:

Lo () = %oz(xl) (0.14 —0.08 (1 - 2da(w))2 —0.06 (1 - Qd“(m>)4> ,

() a(r)

where d,(x) = min{zy, a(r) — 22}, € Q(a). The following boundary
conditions are assumed:

v = 0 onI'yUT,,
v = vp on I'p, (3)
v-T=v; = 0 on 'y,
T22 =Tv-v = —O"’UQI/UQ on Fout7

where v, T stands for the unit normal, tangential vector to I'yy, respectively
and o > 0 is a given suction coefficient. The condition (3), originates in the
homogenization of a complex geometry.

2 Approximation and test results

The state problem (2) is discretized using the finite element method on a
triangular mesh. In order to compute the gradient of J with respect to
«, the adjoint equation technique is applied to the discrete state problem.
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Domain shapes
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Figure 2: Initial and optimal shape.

All necessary partial derivatives are provided with help of the automatic
differentiation. The function « is approximated by a Bézier function «a;; of
order M. Admissibility of a;; is imposed by simple lower and upper bounds
only.

Finally, our problem can be formulated as a nonlinear, bounds-constrained
programming problem for which the cost function value and gradient are
available. We used the NAG C library, routine e04wdc [1] to solve this
problem, using the default parameter values.

In the test computation we used the following dimensionless parameters:
L1 = ]_O, LQ = 80, L3 = 05, H1 = ]_O, H2 = O]_, Amin = HQ, Aazr = Hl,
po = 1073, p = 10°, o = 10°, the inlet velocity vpjoyx0,m,) = (4(1 — (QHLE —
1)%),0), vpiiryx,m) = (1 — (%2 —1)%,0). The order of the Bézier function
apr was set M = 20, and the target velocity vop := —0.433.

The optimization started from the traditional linearly tapering shape.
The initial and optimal shape (found by e04wdc) is depicted in Figure 2 and
the initial and optimal velocity profile vy, is depicted in Figure 3.

The NAG routine found the solution after 73 major iterations, yielding

the optimality error smaller than 1075,



Outlet velocity profiles
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Figure 3: Initial and optimal velocity profile.

3 Conclusion

The NAG optimization routine shows itself to fully meet the demands of the

problem.
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