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1 Bayesian Statistics

Statistical methodology can be split roughly, into two approaches; the frequentist (or tradi-
tional) approach and the Bayesian approach.

In many situations there is the concept of a “true” effect, which one is interested in estimating
and an “observed” effect, the effect one observes in a set of data.

In a frequentist framework the “true” effect is considered fixed and probability statements
are made about the “observed” effect. These probability statements are based on the concept
of repeatability.

In a Bayesian framework the “observed” effect is considered fixed and probability statements
are made about the “true” effect. These probability statements, often expressed in terms of a
posterior distribution, can be viewed as a measure of personal belief; they are a combination
of prior belief and the information contained within the observed data.

For a set of observed data, y, and a vector of m parameters, θ, Bayes theorem [1] states

P (θ|y) ∝ P (y|θ)P (θ)

that is, the probability of the parameters given the observed data is proportional to the prod-
uct of the probability of the data given the parameters and the probability of the parameters.
The probability P (θ|y) is usually refered to as the posterior probability and P (θ) as the prior
probability.

If the parameters θ are continuous, this corresponds to
∫

p(θ|y) ∝
∫

L(y|θ)p(θ) (1)

where p(.) indicates the density function and L(y|θ) is the likelihood of the data given the
parameters. In many cases, the constant of integration, which converts equation (1) from
“proportional to” to “equals” is unknown.

In addition to the posterior distribution, the predictive distribution is also of interest. Given
a new set of data, ȳ, the predictive distribution, p(ȳ|y), i.e. the probability of the new
observation, given the old observations is given by

p(ȳ|y) =
∫

θ

L(ȳ|θ)p(θ|y)dθ

In this paper we illustrate a number of ways of making inferences about the posterior and
predictive distributions using routines from the NAG library. The routines and code snippets
refered to in this document are from the NAG Fortran library, but similar routines are
available in the NAG C library as well.
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2 Example

In order to illustrate some of the techniques, that can be easily implemented using the NAG
library, we will fit a simple generalised linear model to some example data in a Bayesian
manner.

The data for this particular example were taken from page 87 of Bayesian Methods in Finance
[6] and consists of a binary response y, taking values; default (1) or not default (0), for 46
companies and four independent variables. The independent variables are the ratios; cash
flow to total debt, net income to total assets, current assets to current liabilities and current
assets to net sales, taken over a period of one year which was two years prior to 21 of the
companies defaulting. In addition data for three hypothetical companies are used to illustrate
how the model can be used for prediction.

In brief, a generalised linear model (GLM) consists of the following three elements:

• A suitable distribution for the dependent variable y.

• A linear model, with linear predictor η = Xβ, where X is a matrix of independent
variables and β a column vector of m parameters.

• A link function g(.) between the expected value of y and the linear predictor, that is
E(y) = η = g(µ).

In order to fit a GLM in a Bayesian framework one must also consider a prior distribution
for the parameters, β.

In this example, we have binary data and therefore logistic regression will be used. The
distribution for the dependent variable is a Bernoulli distribution and we will use a logit link,
that is

ηi = log
(

µi

1− µi

)

hence the likelihood is given by

L(y|β) =
n∏

i=1

µyi

i (1− µi)1−yi

and the log likelihood, l(y|β) by

l(y|β) ∝
n∑

i=1

yixiβ − log(1 + exp(xiβ))

where xi denotes the ith row of the design matrix X. There are four ratios and we also
fit an intercept so in total there are five independent parameters (m = 5). Our vector of
parameters, θ = {β0, β1, β2, β3, β4}, where β0 is the parameter associated with the intercept.
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For ease, we use an (improper) uniform prior for the β, with p(β) ∝ 1, however, it is relatively
straightforward to use a more informative prior if required.

Given a new set of data for the independent variables, X̄, draws from the predictive distri-
bution can therefore be made as follows:

1. Draw a sample, β̄ from the posterior distribution, p(θ|y).

2. Calculate η̄ = X̄β̄

3. Set ȳ = g−1(η̄), which in the case of the above logistic model means

ȳ =
exp η̄

1 + exp η̄

Once a sample from the predictive distribution has been obtained, standard monte carlo
methodology can be used to make inferences about the predictive distribution, i.e. the mean
of the distribution can be approximated by the mean of the sample etc.

3 Approximating the Posterior Distribution

In this section, we briefly describe two approximations to a posterior distribution, the Normal
approximation and the Laplace approximation, both of which are based on a Taylor expansion
around the posterior mode.

3.1 A Taylor Expansion Around the Posterior Mode

Let p(θ|y) denote a generic posterior density function, upto the constant of integration, for
a parameter set θ (i.e. p(θ|y) has not been normalised to integrate to one). Under certain
regularity conditions, the log of the posterior distribution can be approximated by its Taylor
expansion around its mode, θ̂, with

log(p(θ|y)) ≈ log(p(θ̂|y))

+
d log(p(θ|y))

dθ

∣∣∣∣
θ=θ̂

(θ − θ̂)

+
1
2
(θ − θ̂)T

(
d2 log(p(θ|y))

dθθT

∣∣∣∣
θ=θ̂

)
(θ − θ̂)

+ O(3)

As θ̂ is the mode of the posterior distribution, hence a maximum of the log posterior, the
second term on the right hand side evaluates to zero. The log-posterior can therefore be
approximated by

log(p(θ|y)) ≈ const +
1
2
(θ − θ̂)T

(
d2 log(p(θ|y))

dθθT

∣∣∣∣
θ=θ̂

)
(θ − θ̂) (2)
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where the term (
d2 log(p(θ|y))

dθθT

∣∣∣∣
θ=θ̂

)
= H

is the Hessian matrix of the log posterior distribution evaluated at θ̂.

A discussion of the accuracy of this approximation, and the necessary regularity conditions,
can be found in Tierney and Kadane [8] and the references contained therein.

3.2 Obtaining the Posterior Mode and Resulting Hessian

The mode of the posterior distribution is located at the maximum of the posterior density
function. The location of this maximum is invariant under scaling, hence the maximum of
the normalised posterior density function is in the same location as the maximum of the un-
normalised density function. Therefore estimating the posterior mode boils down to finding
the maximum of

p(y|θ)p(θ)

which is equivalent to finding the minimum of

− log(p(y|θ)p(θ))

There are a number of routines in the NAG library which can be used for this, including
E04JYF, E04UCA, E04UFA and E04WDF. Which routine is best will depend on the form of the
likelihood, prior distributions and whether the first and second derivatives are available.

In this example, we are using the routine E04UCA. It is recommended that the derivatives of
the objective function are supplied, where possible. In this example, in order to keep the
code as simple as possible we are letting E04UCA approximate the derivatives. It should be
noted, that if the derivatives are supplied, the optimisation will run significantly quicker.
The improvement in speed is particularly noticeable when using the Laplace approximation
where a number of optimisations are performed.

As we are not supplying derivatives we need to set the optional ‘Derivative Level’ argu-
ment to zero:

CALL E04UEA(’Derivative Level = 0’,LWSAV,IWSAV,RWSAV,INFO)

E04UCA allows for constraints to be put on the parameters being optimised. However, when
estimating the posterior mode we have no constraints, so use:

NCLIN = 0
NCNLN = 0
BL(1:M) = -INFBND
BU(1:M) = INFBND
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where INFBND is a constant set to a large value (1020 in this case).

We require the Hessian of the log-posterior, evaluated at the posterior mode, so set the
optional ‘Hessian’ argument to ‘Yes’

CALL E04UEA(’Hessian = Yes’,LWSAV,IWSAV,RWSAV,INFO)

The posterior mode can then be estimated via:

CALL E04UCA(M,NCLIN,NCNLN,LDA,LDCJ,M,A,BL,BU,E04UDM,OBJFUN,ITER, &
INFO,CCON,CJAC,CLAMBDA,OBJF,GRAD,H,BETA,IWORK,LIWORK,WORK,LWORK, &
IUSER,RUSER,LWSAV,IWSAV,RWSAV,IFAIL)

where E04UDM is a dummy constraint function supplied with the NAG library and OBJFUN
is a routine that returns −l(y|θ)− log p(θ). For the example described in section (2) we are
using a uniform prior so

LOGPRIOR = ZERO

and the log likelihood is given by

! Calculate XB = X* (BETA) (DGEMV = F06PAF)
CALL DGEMV(’NoTranspose’,N,M,ONE,X,N,BETA,1,ZERO,XB,1)

! Calculate XYB = X * Y * B (DDOT = F06EAF)
XYB = DDOT(M,XY,1,BETA,1)

! Calculate the log likelihood
LOGLIKE = ZERO
DO I = 1, N

LOGLIKE = LOGLIKE + LOG(ONE + EXP(XB(I)))
END DO
LOGLIKE = LOGLIKE - XYB

Once the optimisation has been completed, the value held in the parameter IFAIL should
be checked. A list of the possible values for IFAIL can be found in the documentation for
E04UCA at the NAG web site.

With the correct options turned on the optimisation routine E04UCA returns an estimate of
the Cholesky factorisation of the Hessian matrix evaluated at the minimum value, and in
many situations this approximation is sufficient. However, there are some instances when
a more accurate estimate is required. If the Hessian cannot be calculated explicitly then
E04XAA can be used instead.
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! Re-calculate the Hessian using E04XAA
MSGLVL = 0
EPSRF = ZERO
HFORW(1:M) = ZERO
CALL E04XAA(MSGLVL,M,EPSRF,BETA,MODE,OBJFUN,M,HFORW,OBJF,GRAD, &

HCNTRL,H,IWARN,WORK,IUSER,RUSER,INFO,LWSAV,IWSAV, &
RWSAV,IFAIL)

One of the advantages of using E04UCA in the above optimisation is that the form of the
objective function required by E04UCA is identical to that required by E04XAA, and so no
further coding is required.

3.3 Normal Approximation

The Normal approximation is a quick and dirty way of approximating a unimodel posterior
distribution using the Taylor expansion around the mode given in equation (2).

If we take exponentials of both sides of equation (2), we get

p(θ|y) ∝ exp
(
−1

2
(θ − θ̂)T (−H)(θ − θ̂)

)

which is the kernel of a multivariate Normal distribution, with mean θ̂ and covariance matrix
Σ = −H−1. We can therefore use a multivariate Normal distribution, MVN(θ̂,−H−1) as an
approximation to the posterior distribution, p(θ|y), allowing us to make inferences about the
posterior distribution by making inferences about the multivariate Normal distribution. For
example, credible intervals for each of the parameters can be obtained by calling G01FAF, as
in

QUANT = G01FAF(’C’,0.05E0_WP,IFAIL)
DO J = 1, M

TMP = QUANT*SQRT(SIGMA(J,J))
WRITE (NOUT,’(I5,3(E12.5,1X))’) J, BETA(J) - TMP, BETA(J), &

BETA(J) + TMP
END DO

Where the vector BETA contains the posterior modes and the matrix SIGMA holds the covari-
ance matrix obtained from the Hessian matrix.

Given a series of NPRED new observations, draws from the predictive distributions can be
obtained by making draws from a multivariate Normal distribution and then inverting the
link function, for example:

! Generate NGEN N(BETA,SIGMA) values
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IFAIL = INFAIL
CALL G05RZF(MODE,NGEN,M,BETA,SIGMA,M,R,LR,STATE,Q,LDQ,IFAIL)

! Get the "eta" from the logistic regression (i.e. the linear predictor)
! Calculate QB = PX * Q (give or take a few transposes) (DGEMM = F06YAF)
CALL DGEMM(’NoTranspose’,’Transpose’,NPRED,NGEN,M,ONE,PX,NPRED,Q, &

LDQ,ZERO,QB,NPRED)

DO I = 1, NGEN
! Invert the link function to get the probability
DO J = 1, NPRED

EQB = EXP(QB(J,I))
QB(J,I) = EQB/(ONE+EQB)

END DO

! Display the simulated values
WRITE (NOUT,*) I, QB(1:NPRED,I)

END DO

Prior to calling any of the NAG random number generators, an initialisation routine must
first be called. This can either be G05KFF or G05KGF. G05KFF initialises the generators to a
repeatable sequence, that is, if you run the program again you will get the same answer. For
a non-repeatable sequence the routine G05KGF should be called instead. Within a program,
only a single call should be made to one of the initialisation routines as opposed to continually
re-initialising the sequence.

3.4 Laplace Approximation

An alternative to the Normal approximation is the Laplace approximation. As with the Nor-
mal approximation, the Laplace approximation uses the Taylor expansion given in equation
(2). Unlike the Normal approximation, the Laplace approximation uses this expansion twice,
once to approximate the marginal distribution and once to approximate the constant of in-
tegration. The Laplace approximation is generally better than the Normal approximation,
especially for small sample sizes. Both approximations are likely to be inappropriate for more
complicated posterior distributions, for example, multimodal distributions.

A description of using the Laplace approximation to estimate both the moments of the
posterior distribution and a marginal density is given in Tierney and Kadane [8].

In order to approximate a marginal distribution, a number of calls to the optimisation routine
must be made. Firstly the posterior mode, β̂, and associated Hessian, H, must be obtained
in a similar manner to described in section 3.3. Then, for the marginal distribution of βj , the
posterior mode and associated Hessian of p(βj = k, β−j |y) is required, where k is a constant
and β−j is all the parameters, excluding βj . If the mode and Hessian for p(βj = k, β−j |y) are
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denoted β̂−j and H−j respectively, then the posterior distribution at βj = k is proportional
to ( |H−j |

|H|
)1/2

p(βj = k, β̂−j)L(y|βj = k, β̂−j)

p(β̂)L(y|β̂)

The main additional coding requirement for the Laplace approximation over the Normal ap-
proximation, is to write the objective function in such a way that you can fix the parameters,
one at a time, to different values.

Estimating the marginal posterior distribution using the Laplace approximation is one of the
situations where it is better to use the more accurate Hessian supplied by E04XAA, rather
than the one used in the optimisation by E04UCA.

When using a Laplace approximation to approximate the marginal density function, Tierney
and Kadane recommend that the estimated values are renormalised. This can be done via a
call to D01GAF.

DO J = 1, M
! Get and approximation to the integral of the marginal
CALL D01GAF(XVALS(1,J),STORE(1,J),NPOINTS,ANS,ER,IFAIL)

! Renormalise the values
STORE(1:NPOINTS,J) = STORE(1:NPOINTS,J)/ANS

END DO

where XVALS(I,J) holds a value in the domain of the jth marginal and STORE(I,J) holds
the Laplace approximation to the jth marginal distribution evaluated at XVALS(I,J).

4 Iterative Methods for Sampling from the
Posterior Distribution

Rather than using an approximation, one could use an iterative sampling method in order
to explore the posterior distribution.

Two approaches will be briefly mentioned here, one based on a Metropolis-Hastings sampler
and the other based on importance sampling.

4.1 Metropolis-Hasting Independence Sampler

Markov Chain Monte Carlo (MCMC) methodology is one way of drawing samples from
a specified distribution. As its name suggests, an MCMC algorithm uses the stationary
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distribution of a Markov chain to sample from the distribution and Monte Carlo integration
to make inferences about the distribution.

In order to sample using a Markov chain one must first construct a chain whose stationary
distribution is the distribution of interest. The Metropolis-Hastings algorithm [5] is one way
of doing this. This algorithm consists of four steps:

1. Generate an initial set of values for the parameters θ and label it θ(0). Set the counter
t = 1.

2. Generate a new set of values, θ′, from some arbitary conditional distribution q(θ′|θ(t)),
often called the proposal distribution.

3. Accept the new values, θ′, with probability

α(θt, θ′) = min
(

1,
p(y|θ′)p(θ′)

p(y|θ(t))p(θ(t))
q(θ(t)|θ′)
q(θ′|θ(t))

)

and set θ(t+1) = θ′, otherwise keep the old values and set θ(t+1) = θ(t).

4. Increment the counter t and repeat steps (2) and (3).

The choice of proposal distribution q is paramount when using an MCMC algorithm. There
have been a number of standard types of proposal distribution suggested, including the
Metropolis sampler, the independence sampler and the Gibbs sampler. Gilks et al. [3]
give a good description of MCMC methodology, including a discussion of these proposal
distributions amongst others.

In this example we will take a look at one particular example of an independence sampler.
The independence sampler uses a proposal distribution that is independent of the current
parameter values, that is q(θ′|θ(t)) = q(θ′). It is usually good practice to choose a proposal
distribution that has a similar location and scale to the posterior distribution. One such choice
is a Normal distribution, with mean equal to the posterior mode and covariance matrix −H−1

where H is the Hessian of the log-posterior distribution evaluated at the posterior mode, θ̂,
i.e.

q(θ′) ∼ N(θ̂,−H−1)

It is common practice to scale the covariance matrix by some factor SCALE. This can be done
by scaling H, the matrix returned by E04UCA during the estimation of the posterior mode (see
section 3.2) as follows:

SSCALE = ONE/SQRT(SCALE)
DO J = 1, M

! Scale the upper part of H (DSCAL = F06EDF)
CALL DSCAL(J,SSCALE,H(1,J),1)

END DO
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prior to explicitly calculating the covariance matrix Σ:

DETS = ONE
DO I = 1, M

! Copy upper part of H (DCOPY = F06EFF)
CALL DCOPY(I,H(1,I),1,SIGMA(1,I),1)
DETS = DETS*H(I,I)

END DO
LDETS = -TWO*LOG(DETS)

! Calculate SIGMA = (H^T H)^{-1} (DPOTRI = F07FJF)
CALL DPOTRI(’Upper’,M,SIGMA,M,INFO)

Here we first copy the upper Cholesky decomposition of the Hessian which is held in H into
SIGMA, before calculating the inverse of the Hessian with a call to DPOTRI. We also calculate
the log of the determinant of Σ, LDETS, at the same time.

In order to carry out the analysis using an MCMC algorithm an array of proposed values is
required, which in this case come from a multivariate Normal distribution

CALL G05RZF(MODE,NSIM,M,BETA,SIGMA,M,R,LR,STATE,Q,LDQ,IFAIL)

along with a vector of values from a standard uniform distribution to test for acceptance /
rejection of the proposed values.

CALL G05SAF(NSIM,STATE,U,IFAIL)

As mentioned before, prior to calling any of the NAG random number generators, one of the
initialisation routines, G05KFF or G05KGF must have been called first. Now all we do is loop
over each of these generated values.

SIM_LOOP:DO I = 1, NSIM
! Copy a single variate from the array of multivariate normal
! variates
CQ(1:M) = Q(I,1:M)

! Get probability of the proposed value from the proposal distribution
PQ2 = MVN_PDF(M,CQ,BETA,SH,M,SLDETS,D)

! Get posterior, P(Q | X, Y), upto the normalising constant
LX2 = EXP(-LOGPOSTERIOR(N,M,X,N,CQ,XY,XB))

! Acceptance probability
ACCEPT = MIN(ONE,(LX2*PQ1)/(LX1*PQ2))
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IF (ACCEPT>=U(I)) THEN
! Accept the new values, so save LX2 and PQ2 and the accepted values
PQ1 = PQ2
LX1 = LX2
SCQ(1:M) = CQ(1:M)

END IF

! Display the simulated values
WRITE(NOUT,*) I, SCQ(1:M)

END DO SIM_LOOP

Here LOGPOSTERIOR returns minus the log of the posterior density function (up to the normal-
ising constant) and is the same function used when we estimated the mode of the posterior
distribution in section 3.2. The call to MVN PDF returns the probability density function for
the multivariate Normal distribution evaluated at CQ.

For a large number of simulations it may be necessary to split the simulation into smaller
blocks of values, i.e. generate NBLK blocks of NGEN values, where NBLK = NSIM / NGEN, rather
than all NSIM in one go. It should be noted that it is more efficient to make multiple draws
from the proposal and uniform distributions in one go, as done above, rather than putting
G05RZF and G05SAF into the SIM LOOP loop and generating a single value from each at each
iteration.

Drawing a sample from the predictive distribution for a new set of data proceeds in a man-
ner similar to that described in section 3.3, but with the values stored in SCQ above being
substituted for the draws from the Normal distribution.

When drawing inferences about a posterior or predictive distribution using any MCMC tech-
nique, care must be taken that the underlying markov chain has converged, see Gilks et al.
[3] for a discussion of this.

4.2 Importance Sampling

Importance sampling (see Ripley [7]) involves estimating the expected value of a function of
the parameters, given the data, E(f(θ|y) by the following:

E(f(θ)|y) ≈
∑

t f(θ(t))w(θ(t))∑
t w(θ(t))

where the θ(t) are draws from some arbitary distribution, with density function h(θ), that
closely approximates the posterior distribution and

w(θ) =
L(y|θ)p(θ)

h(θ)
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Implementing the importance sampler using the NAG library is very similar to implementing
the independent Metropolis-Hastings sampler, discussed briefly in section 4.1. The random
number generators must be initialised in the same way and it is usual to scale the covariance
matrix in a similar manner.

For this particular implementation of the importance sampler, we are using a multivariate
distribution, centred on the posterior mode, as the sampling distribution, h(θ). In such cases
Geweke [2] suggests scaling the covariance matrix (H−1) by a factor of 1.44(1.22). Unlike
with the M-H independence sampler, we do not have an acceptance probability and so there
is no need to call G05SAF. The main generating loop for this importance sampler is

SIM_LOOP:DO I = 1, NSIM
! Copy a single variate from the array of multivariate normal variates
CQ(1:M) = Q(I,1:M)

! Get probability of variate from the sampling distribution
PQ = MVN_PDF(M,CQ,BETA,SH,M,SLDETS,D)

! Get posterior, P(Q | X, Y), upto the normalising constant
LX = EXP(LOGPOSTERIOR(N,M,X,N,CQ,XY,XB))

! Calculate the importance weighting
WT = LX / PQ

! Display the simulated values and the associated weights
WRITE(NOUT,*) I, WT, CQ(1:M)

END DO SIM_LOOP

Drawing a sample from the predictive distribution for a new set of data proceeds in a man-
ner similar to that described in section 3.3, but with the values stored in CQ above being
substituted for the draws from the Normal distribution. These draws from the predictive
distribution are weighted using the WT calculated above.

4.3 Summarising a Series of Draws from a Distribution

One method for making inferences about a distribution is via Monte Carlo integration. Monte
Carlo integration involves estimating the expected value of a function, f , of the distribution
by using random draws X(t) from that distribution, such that

E(f) ≈ 1
T

T∑
t=1

f(X(t))

The upshot of this is that you can make inferences about the distribution of interest by
making inferences about a sample from that distribution.
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Figure 1: Series of Example Plots
The data for the various plots was taken from a series of NAG routines. The plots themselves
were generated using version 4.2 of gnuplot [4]

Many of the methods discussed in the previous sections result in samples. The Normal
approximation gives rise to samples from the predictive distribution. The independence
sampler and importance sampling algorithms give rise to samples from both the posterior
and predictive distributions. In the case of the importance sampling algorithms, these samples
are weighted.

There are a number of routines in the NAG library that are useful for summarising such
samples.

4.3.1 Summarising an Unweighted Sample

Assume that Q(I,J) holds the ith sample for the jth parameter. Estimates of a number of
summary statistics, including the mean, variance etc, can be obtained using G01AAF.

DO J = 1, M
IWT = 0
CALL G01AAF(NSIM,Q(1,J),IWT,WT,XMEAN(J),S2,S3,S4,XMIN(J),XMAX(J), &

SCAT(J),IFAIL)
END DO

We have an unweighted sample, so IWT = 0 and the vector WT need not be assigned.

Median values and credible intervals can be calculated using G01AMF as follows:
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! Returning the 2.5%, 50.0% and 97.5% quantiles
RQUANT(1:3) = (/ 0.025E0_WP, 0.5E0_WP, 0.975E0_WP/)

DO J = 1, M
! Estimate of quantiles can be obtained from G01AMF, without sorting
CALL G01AMF(NSIM,Q(1,J),3,RQUANT,QUANT(1,J),IFAIL)

END DO

where the lower and upper limits for a 95% credible interval will be held in the first and third
rows of QUANT. It should be noted that G01AMF overwrites the input data with a partially
sorted version. Therefore G01AMF should be the last summary routine run, unless the data is
copied first.

A contingency table of the sample, and hence the values required to construct a histogram,
can be calculated via a call to G01AEF

ICLASS = 0
CALL G01AEF(NSIM,NCAT(J) + 1,Q(1,J),ICLASS,CB(1,J),IFREQ(1,J), &

TXMIN,TXMAX,IFAIL)

If ICLASS is not one, then each column of the array CB must contain a set of NCAT(J) suitable
break points for the histogram, i.e. the data for the jth parameter is grouped into values
that fall between CB(1,J) and CB(2,J), CB(2,J) and CB(3,J) etc. If ICLASS is set to one,
then G01AEF calculates its own break points. However, these break points might not be best
suited to producing a histogram. Once constructed, the resulting frequencies can be scaled
by NSIM*STEP(J), where STEP(J) = CB(2,J) - CB(1,J) (assuming equally spaced break
points), so that the area under the chart sums to one.

Rather than a histogram, a kernel density plot of the posterior distribution can be con-
structed. The values required for this are obtained from G10BAF as follows:

USEFFT = .FALSE.
DO J = 1, M

! Get the WINDOW for the density estimation
WINDOW = STEP(J)*KDSMOOTH

! Values of SLO and SHI are taken from recommendation in
! the documentation for G10BAF
SLO = XMIN(J) - THREE*WINDOW
SHI = XMAX(J) + THREE*WINDOW

! Do the kernel density estimation
IFAIL = INFAIL
CALL G10BAF(NSIM,Q(1,J),WINDOW,SLO,SHI,NPOINTS,SMOOTH(1,J), &
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T(1,J),USEFFT,FFT,IFAIL)
END DO

Other summaries are possible, for example, when using an MCMC sampler, it is often useful
to be able to plot the autocorrelation between successive samples. The required information
can be obtained by a call to G13ABF:

DO J = 1, M
IFAIL = INFAIL
CALL G13ABF(Q(1,J),NSIM,NAUTO,XM,XV,R(1,J),STAT,IFAIL)

END DO

where NAUTO is the maximum lag required and R holds the correlation on exit.

4.3.2 Summarising a Weighted Sample

There are less routines that are directly usable on a weighted sample.

As with the unweighted sample, various summary statistics can be obtained using G01AAF.
In the weighted example, the variable IWT needs to be set to 1, and the vector WT will hold
the (importance sampling) weights.

Credible intervals can be obtained by a combination of the sorting routines, M01DAF and
M01ZAF and, if required, the interpolation routines E01BEF and E01BFF. Rather than using
the E01 routines, simple linear interpolation could be used instead.

For each margin, J, rank the sample in ascending order:

ORDER = ’A’
CALL M01DAF(Q(1,J),1,NSIM,ORDER,IRANK,IFAIL)

the convert the ranks into indices:

CALL M01ZAF(IRANK,1,NSIM,IFAIL)

i.e. now IRANK(I) will hold the row of the original column of Q that would sit in the ith
position in a sorted list. Calculate an (unnormalised) empirical CDF for the jth margin:

! Get an empirical CDF (not normalised)
CDF(1) = WT(IRANK(1))
XVAR(1) = Q(IRANK(1),J)
K = 1
DO I = 2, NSIM

15 of 26

http://www.nag.co.uk/numeric/FL/manual/xhtml/G13/g13abf.xml
http://www.nag.co.uk/numeric/FL/manual/xhtml/M01/m01daf.xml
http://www.nag.co.uk/numeric/FL/manual/xhtml/M01/m01zaf.xml
http://www.nag.co.uk/numeric/FL/manual/xhtml/E01/e01bef.xml
http://www.nag.co.uk/numeric/FL/manual/xhtml/E01/e01bFf.xml


NP3667 (TR3/08) September 25, 2008

S2 = CDF(K) + WT(IRANK(I))
IF (S2 > CDF(K)) THEN

! Ensure that the values of CDF are strictly increasing
! if two or more values are the same, then this takes the smallest
! XVAR value
K = K + 1
CDF(K) = S2
XVAR(K) = Q(IRANK(I),J)

END IF
END DO

Preprocess the empirical CDF to allow for interpolation:

CALL E01BEF(K,CDF,XVAR,D,IFAIL)

Interpolate the required quantiles:

! Returning the 2.5%, 50.0% and 97.5% quantiles
RQUANT(1:3) = (/ 0.025E0_WP, 0.5E0_WP, 0.975E0_WP/)

! Interpolate the required values
IFAIL = QUIET
CALL E01BFF(K,CDF,XVAR,D,3,RQUANT,QUANT(1,J),IFAIL)
! Check the IFAIL by hand, as E01BFF warns if the interpolant
! is outside the data range and this isn’t cause to stop
! the program
IF (IFAIL/=0) THEN

IF (IFAIL/=4 .AND. INFAIL/=QUIET) THEN
WRITE (*,*) ’Error in E04XAF, IFAIL = ’, IFAIL
IF (INFAIL==HARD) STOP

END IF
END IF

5 Results for Example

This section gives a brief summary of the various results obtained from fitting the model
described in section 2, using the methods described in this document.

Figure 2 gives density plots for the marginal posterior distributions for each of the five
parameters from the logistic regression described in section 2. These plots were obtained
using the Laplace approximation.

As can be seen from figure 3, similar results were obtained using the importance sampling
and Metropolis-Hasting independence sampler. The Normal approximation gives a good
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Figure 2: Marginal Posterior Distributions (Laplace Approximation)

approximation for β2, but is out for the other parameters. It should be noted that in all
cases the Laplace approximation is as good as, or better than the Normal approximation.

This pattern is also seen when examining the 95% credible intervals obtained from each
method. The importance sampling and Metropolis-Hasting independence sampler give simi-
lar results and the Normal approximation differs. The values obtained from the importance
sampling and the Normal approximation are given in tables 1 and 2 respectively.

95% credible intervals and the associated density plots for the predictive distribution for the
three hypothetical companies are given in table 3 and figure 4 respectively.

As with figure 1, the data for all the figures in this section were taken from the various pieces
of Fortran code. The plots themselves were produced using gnuplot version 4.2 [4].
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2.5% 97.5%
Margin Quantile Median Mean Quantile

β0 2.1093 6.6086 6.7720 12.882
β1 -22.443 -8.6305 -8.9313 2.8983
β2 -25.527 4.0536 3.7635 32.560
β3 -7.2141 -4.2463 -4.3418 -1.9365
β4 -2.3767 3.6311 3.8798 11.253

Table 1: Posterior Distribution Credible Intervals (Importance Sampling)
Mean, median and 95% credible intervals for marginal distributions of the model parameters.
Calculated using importance sampling, with a sample of 30,000.

2.5% 97.5%
Margin Quantile Median Mean Quantile

β0 5.1721 5.3197 5.3197 5.46739
β1 -7.4795 -7.1050 -7.1050 -6.73044
β2 2.7649 3.6190 3.6190 4.47308
β3 -3.4907 -3.4152 -3.4152 -3.33965
β4 2.7761 2.9703 2.9703 3.16457

Table 2: Posterior Distribution Credible Intervals (Normal Approximation)
Mean, median and 95% credible intervals for marginal distributions of the model parameters.
Calculated using a Normal approximation.

2.5% 97.5%
Margin Quantile Median Mean Quantile

Company 1 0.2660 0.6503 0.6307 0.9274
Company 2 0.8457 0.9995 0.9847 1.000
Company 3 0.5426e−10 0.5723e−3 0.1719 0.9991

Table 3: Prediction Distribution Credible Intervals
Mean, median and 95% credible intervals for the prediction distributions. Calculated using
importance sampling, and a sample size of 30,000.
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Figure 3: Marginal Posterior Distributions (Comparisons of Four Different Methods)
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Prediction Distributions for Three Hypothetical Customers. This plots shows the predictive
distribution for the probability of defaulting for each of three hypothetical customers. The
distributions were estimated using the Metropolis-Hastings Independence Sampler
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Summary of NAG Routines Referenced

The Fortran code supplied with this document has been written with Mark 22 of the Fortran
library in mind. Six routines referenced in the code and this document are new at Mark
22, these are; G05KFF, G05KGF, G05SAF, G05RZF, G01AMF and M01NAF. Of these, four have
equivalent routines in Mark 21:

G05KGF

Mark 22 code:

G05KGF(GENID,SUBID,STATE,LSTATE,IFAIL)

Mark 21 code:

G05KCF(IGEN,ISEED)

G05KFF

Mark 22 code:

G05KFF(GENID,SUBID,ISEED,LSEED,STATE,LSTATE,IFAIL)

Mark 21 code:

G05KBF(IGEN,ISEED)

G05RZF

Mark 22 code:

G05RZF(MODE,N,M,XMU,C,LDC,R,LR,STATE,X,LDX,IFAIL)

Mark 21 code:

G05LYF(MODE,M,XMU,C,LDC,N,X,LDX,IGEN,ISEED,R,LR,IFAIL)

G05SAF

Mark 22 code:

G05SAF(N,STATE,X,IFAIL)

Mark 21 code:

G05LGF(ZERO,ONE,N,X,IGEN,ISEED,IFAIL)

In the example code supplied we are using the Mersenne Twister as the base generator as
denoted by the use of GENID=3 when calling the initialisation routine G05KFF. This base
generator is not in Mark 21 of the library. If using the Mark 21 routines it is recommended
that one of the Wichmann-Hill generators be used instead, i.e IGEN = 1 will use the first of
the 273 Wichmann-Hill generators.
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The Mark 22 routine G01AMF, which calculates quantiles of an unsorted vector, has no equiv-
alent in the Mark 21 library. Rather than using G01AMF when summarising an un-weighted
sample you can use the same code as for a weighted sample replacing the weight WT, with a
value of 1.0.

The Mark 22 routine M01NAF, which performs a binary search of a vector, has no equivalent
in the Mark 21 library. The call to M01NAF:

ID = M01NAF(.FALSE.,CB(1,J),1,NCAT(J),Q(I,J),IFAIL) + 1

can be replaced by a inear search along the lines of:

ID = NCAT(J) + 1
DO K = 1, NCAT(J)

IF (Q(I,J) .LT. CB(K,J)) THEN
ID = K
EXIT

END IF
END DO
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Referenced NAG Routines:

G01AAF Mean, variance, skewness, kurtosis, etc, one variable,
raw data

G01AEF Frequency table from raw data
G01AMF Specified quantiles from a vector of unsorted data (Mark

22 only)
G01FAF Computes quantiles (deviates) for the standard Normal

distribution
G05KBF Initialize random number generating routines to give a

repeatable sequence
G05KCF Initialize random number generating routines to give a

non-repeatable sequence
G05KFF Initialize random number generating routines to give a

repeatable sequence (Mark 22 only)
G05KGF Initialize random number generating routines to give a

non-repeatable sequence (Mark 22 only)
G05LGF Generate a vector of random numbers from a uniform

distribution
G05LYF Generate a matrix of random numbers from a multivari-

ate Normal distribution
G05SAF Generate a vector of random numbers from a standard

uniform distribution (Mark 22 only)
G05RZF Generate a matrix of random numbers from a multivari-

ate Normal distribution (Mark 22 only)
G10BAF Kernel density estimate using Gaussian kernel
G13ABF Univariate time series, sample autocorrelation function
E01BFF Interpolate values, interpolant calculated by E01BEF
E01BEF Interpolating functions, monotonicity-preserving, piece-

wise cubic Hermite
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E04JYF Minimum, function of several variables, quasi-Newton
algorithm, simple bounds, using function values only
(easy-to-use)

E04UCA Minimum, function of several variables, sequential QP
method, nonlinear constraints, using function values
and optionally first derivatives (forward communication,
comprehensive)

E04UEA Suppy optional parameters to E04UCA or E04UFA
E04UFA Minimum, function of several variables, sequential QP

method, nonlinear constraints, using function values
and optionally first derivatives (reverse communication,
comprehensive)

E04WDF Solves the nonlinear programming (NP) problem
E04XAF Estimate (using numerical differentation) gradient

and/or Hessian of a function
F06EAF Dot product two real vectors
F06EDF Multiply real vector by scalar
F06EFF Copy real vector
F06PAF Matrix-vector product, real rectangular matrices
F06YAF Matrix-matrix product, two real rectangular matrices
F07FJF Inverse of a real symmetric positive-definite matrix, ma-

trix already factorised
M01DAF Rank a vector
M01NAF Binary search (Mark 22 only)
M01ZAF Invert a permutation
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Data

The data were taken from page 87 of Bayesian Methods in Finance [6] and consists of a
binary response y, taking values default (1) or not default (0), for 46 companies, and four
independent variables. The independent variables are the ratios, cash flow to total debt (Xi1),
net income to total assets (Xi2), current assets to current liabilities (Xi3) and current assets
to net sales (Xi4), taken over a period of one year, two years prior to 21 of the companies
defaulting.

Xi1 Xi2 Xi3 Xi4 yi Xi1 Xi2 Xi3 Xi4 yi

-0.45 -0.41 1.09 0.45 1 0.51 0.10 2.49 0.54 0
-0.56 -0.31 1.51 0.16 1 0.08 0.02 2.01 0.53 0
0.06 0.02 1.01 0.40 1 0.38 0.11 3.27 0.35 0
-0.07 -0.09 1.45 0.26 1 0.19 0.05 2.25 0.33 0
-0.10 -0.09 1.56 0.67 1 0.32 0.07 4.24 0.63 0
-0.14 -0.07 0.71 0.28 1 0.31 0.05 4.45 0.69 0
0.04 0.01 1.50 0.71 1 0.12 0.05 2.52 0.69 0
-0.06 -0.06 1.37 0.40 1 0.02 0.02 2.05 0.35 0
0.07 -0.01 1.37 0.34 1 0.22 0.08 2.35 0.40 0
-0.14 -0.14 1.42 0.43 1 0.17 0.07 1.80 0.52 0
-0.23 -0.30 0.33 0.18 1 0.15 0.05 2.17 0.55 0
0.07 0.02 1.31 0.25 1 0.10 -0.01 2.50 0.58 0
0.01 0.00 2.15 0.70 1 0.14 -0.03 0.46 0.26 0
-0.28 -0.23 1.19 0.66 1 0.14 0.07 2.61 0.52 0
0.15 0.05 1.88 0.27 1 0.15 0.06 2.23 0.56 0
0.37 0.11 1.99 0.38 1 0.16 0.05 2.31 0.20 0
-0.08 -0.08 1.51 0.42 1 0.29 0.06 1.84 0.38 0
0.05 0.03 1.68 0.95 1 0.54 0.11 2.33 0.48 0
0.01 0.00 1.26 0.60 1 0.33 -0.09 3.01 0.47 0
0.12 0.11 1.14 0.17 1 0.48 0.09 1.24 0.18 0
-0.28 -0.27 1.27 0.51 1 0.56 0.11 4.29 0.44 0

0.20 0.08 1.99 0.30 0
0.47 0.14 2.92 0.45 0
0.17 0.04 2.45 0.14 0
0.58 0.04 5.06 0.13 0

Data for three hypothetical companies used to illustrate prediction.

Xi1 Xi2 Xi3 Xi4

0.05 0.05 1.8 0.5
0.1 0.1 0.5 1.0
2.0 1.0 0.1 0.0
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