
portfolio_optimization_using_socp

October 29, 2020

1 Modelling techniques in portfolio optimization using second-
order cone programming (SOCP) in the NAG Library

2 Correct Rendering of this notebook
This notebook makes use of the latex_envs Jupyter extension for equations and refer-
ences. If the LaTeX is not rendering properly in your local installation of Jupyter , it
may be because you have not installed this extension. Details at https://jupyter-contrib-
nbextensions.readthedocs.io/en/latest/nbextensions/latex_envs/README.html

The notebook is also not rendered well by GitHub so if you are reading it from there, you may
prefer the pdf version instead.

3 Note for the users of the NAG Library Mark 27.1 onwards
At Mark 27.1 of the NAG Library, NAG introduced two new additions to help users easily define
a Quadratically Constrained Quadratic Programming (QCQP) problem. All the models in this
notebook then can be solved in a much simpler way without the need of a reformulation or any
extra effort. It’s recommended that the users of the NAG Library Mark 27.1 or newer should look
at the notebook on QCQP instead.

4 Introduction
Second-order cone programming (SOCP) is convex optimization which extends linear programming
(LP) with second-order (Lorentz or the ice cream) cones. Search region of the solution is the
intersection of an affine linear manifold with the Cartesian product of second-order cones. SOCP
appears in a broad range of applications from engineering, control theory and quantitative finance
to quadratic programming and robust optimization. It has become an important tool for financial
optimization due to its powerful nature. Interior point methods (IPM) are the most popular
approaches to solve SOCP problems due to their theoretical polynomial complexity and practical
performance.

NAG introduces at Mark 27 an interior point method for large-scale SOCP problem in the standard

1

./portfolio_optimization_qcqp.ipynb

form:
minimize

x∈ℜn
cTx

subject to lA ≤ Ax ≤ uA,

lx ≤ x ≤ ux,

x ∈ K,

(1)

where A ∈ ℜm×n, lA, uA ∈ ℜm, c, lx, ux ∈ ℜn are the problem data, and K = K\∞ ×· · ·×K\∇ ×ℜ\↕

where Kni is either a quadratic cone or a rotated quadratic cone defined as follows:

• Quadratic cone:

Kni
q :=

x = (x1, . . . , xni) ∈ ℜni : x21 ≥
ni∑
j=2

x2j , x1 ≥ 0

 . (2)

• Rotated quadratic cone:

Kni
r =

x = (x1, x2, . . . , xni) ∈ ℜni : 2x1x2 ≥
ni∑
j=3

x2j , x1 ≥ 0, x2 ≥ 0

 . (3)

SOCP is widely used in portfolio optimization due to its flexibility and versatility to handle a large
variety of problems with different kinds of constraints, which can be transformed into SOCPs that
are equivalent to (1), see [?, ?] for more details. In the rest of this article we demonstrate how to
use SOCP solver in the NAG Library for Python to build and solve models with various practical
constraints for portfolio optimization.

5 Data preparation
We consider daily prices for the 30 stocks in the DJIA from March 2018 to March 2019. In practice,
the estimation of the mean return r and covariance V is often a non-trivial task. In this notebook,
we estimate those entities using simple sample estimates.

[1]: # Import necessary libraries
import pickle as pkl
import numpy as np
import matplotlib.pyplot as plt

[2]: # Load stock price data from stock_price.plk
Stock_price: dict = ['close_price': [data], 'date_index': [data]]
stock_price = stock_price = pkl.load(open('./data/stock_price.pkl', 'rb'))
close_price = stock_price['close_price']
date_index = stock_price['date_index']

[3]: # Size of data, m: number of observations, n: number of stocks
m = len(date_index)
n = len(close_price)

2

[4]: # Extract stock closing prices to a numpy array
data = np.zeros(shape=(m, n))
i = 0
for stock in close_price:

data[:,i] = close_price[stock]
plt.plot(np.arange(m), data[:,i])
i += 1

Plot closing prices
plt.xlabel('Time (days)')
plt.ylabel('Closing price ($)')
plt.show()

For each stock i, we first estimate the jth daily relative return as

relative returni,j =
closing pricei,j+1 − closing pricei,j

closing pricei,j
.

[5]: # Relative return
rel_rtn = np.zeros(shape=(m-1, n))
for j in range(m-1):

rel_rtn[j,:] = np.divide(data[j+1,:] - data[j,:], data[j,:])
Plot relative return
for i in range(n):

plt.plot(np.arange(m-1),rel_rtn[:,i])
plt.xlabel('Time (days)')

3

plt.ylabel('Relative return')
plt.show()

Simply take arithmetic mean of each column of relative return to get mean return r for each stock,
followed by estimating covariance V using numpy.

[6]: # Mean return
r = np.zeros(n)
r = rel_rtn.sum(axis=0)
r = r / (m-1)
Covariance matrix
V = np.cov(rel_rtn.T)

6 Classic Mean-Variance Model
6.1 Efficient Frontier
One of the major goals of portfolio management is to achieve a certain level of return under a
specific risk measurement. Here we demonstrate how to use NAG Library to build efficient frontier
by solving classical Markowitz model with long-only constraint (meaning, buy to hold and and
short selling is not allowed):

minimize
x∈ℜn

−rTx+ µxTV x

subject to eTx = 1,

x ≥ 0,

(4)

4

where e ∈ ℜn is vector of all ones and µ is a scalar controling trade-off between return and risk.
Note one could build the efficient frontier by varying µ from 0 to a certain value.

[7]: # Import the NAG Library
from naginterfaces.base import utils
from naginterfaces.library import opt
from naginterfaces.library import lapackeig
Import necessary math libraries
import math as mt
import warnings as wn

To solve Problem (4) via SOCP, we need to transform it to the standard formulation (1) and feed
the NAG SOCP solver with data A, lA, uA, c, lx, ux and K. This modelling process is essential
to the usage of SOCP. Getting familiar with these reformulation techniques would unleash the
maximum power of SOCP.

To manage the data that the solver requires, one could create and maintain a dictionary structure.

[8]: def model_init(n):
"""
Initialize a dict to store the data that is used to feed NAG socp solver
"""
model = {

Number of variables
'n': n,

Number of constraints
'm': 0,

Coefficient in objective
'c': np.full(n, 0.0, float),

Bound constraints on variables
'blx': np.full(n, -1.e20, float),
'bux': np.full(n, 1.e20, float),

Coefficient in linear constraints and their bounds
'linear': {'bl': np.empty(0, float),

'bu': np.empty(0, float),
'irowa': np.empty(0, int),
'icola': np.empty(0, int),
'a': np.empty(0, float)},

Cone constraint type and variables group
'cone' : {'type': [],

'group': []}
}

return model

Once the data in the model has been completed, we could feed the data to the NAG SOCP solver
by the following function.

5

[9]: def set_nag(model):
"""
Use data in model to feed NAG optimization suite to define problm
"""

Creat problem handle
handle = opt.handle_init(model['n'])

Set objective function
opt.handle_set_linobj(handle, model['c'])

Set box constraints
opt.handle_set_simplebounds(handle, model['blx'], model['bux'])

Set linear constraints
opt.handle_set_linconstr(handle, model['linear']['bl'],␣

↪→model['linear']['bu'],
model['linear']['irowa'], model['linear']['icola'],␣

↪→model['linear']['a'])

Set cone constraints
i = 0
while i<len(model['cone']['type']):

opt.handle_set_group(handle,model['cone']['type'][i],
0, model['cone']['group'][i])

i += 1

Set options
for option in [

'Print Options = NO',
'Print Level = 1',
'Print File = -1',
'SOCP Scaling = A'

]:
opt.handle_opt_set(handle, option)

return handle

Now Let’s focus on how to get the data in the model ready. In order to add the quadratic objective
to the model, we need the following transformation. Note that by introducing variable t,

minimize
x∈ℜn

−rTx+ µxTV x (5)

is equivalent to
minimize

x∈ℜn
−rTx+ t

subject to µxTV x ≤ t
(6)

when V is positive semidefinite. Now the objective in (6) is linear which fits into the standard

6

model (1). By factorizing V = F TF , one can rewrite the quadratic inequality in (6) to

µ∥Fx∥2 ≤ t,

where ∥ · ∥ is the Euclidean norm. Note that by introducing y = Fx and s = 1
2µ , (6.1) can be

rewritten as
∥y∥2 ≤ 2st,

which has exactly the same form of cone constraint (3). Therefore, the final SOCP formulation of
problem (4) is

minimize
x∈ℜn,y∈ℜn,s∈ℜ,t∈ℜ

−rTx+ t

subject to eTx = 1,

Fx− y = 0,
s = 1

2µ ,

x ≥ 0,
(s, t, y) ∈ Kn+2

r .

(7)

Factorization of V can be done using the NAG Library as follows.

[10]: def factorize(V):
"""
For any given positive semidefinite matrix V, factorize it V = F'*F where
F is kxn matrix that is returned
"""

Size of V
n = V.shape[0]

Note one could use sparse factorization if V is input as sparse matrix
U, lamda = lapackeig.dsyevd('V', 'L', V)

Find positive eigenvalues and corresponding eigenvectors
i = 0
k = 0
F = []

while i<len(lamda):
if lamda[i] > 0:

F = np.append(F, mt.sqrt(lamda[i])*U[:,i])
k += 1

i += 1

F = F.reshape((k, n))

return F

The following code adds a general quadratic objective

minimize
x∈ℜn

1
2x

TV x+ qTx (8)

to the model.

7

[11]: def add_qobj(model, F, q=None):
"""
Add quadratic objective defined as: 1/2 * x'Vx + q'x
transformed to second order cone by adding artificial variables

Parameters

model: a dict with structure:

{
'n': int,
'm': int,
'c': float numpy array,
'blx': float numpy array,
'bux': float numpy array,
'linear': {'bl': float numpy array,

'bu': float numpy array,
'irowa': int numpy array,
'icola': int numpy array,
'a': float numpy array},

'cone' : {'type': character list,
'group': nested list of int numpy arrays}

}
F: float 2d numpy array

kxn dense matrix that V = F'*F where k is the rank of V
q: float 1d numpy array

n vector

Returns

model: modified structure of model

Note: imput will not be checked
"""

Get the dimension of F (kxn)
k, n = F.shape

Default q
if q is None:

q = np.zeros(n)

Up-to-date problem size
m_up = model['m']
n_up = model['n']

Then k + 2 more variables need to be added together with
k + 1 linear constraints and a rotated cone contraint

8

Enlarge the model
model['n'] = model['n'] + k + 2
model['m'] = model['m'] + k + 1

Initialize c in the objective
The order of variable is [x, t, y, s]

model['c'][0:n] = q
model['c'] = np.append(model['c'], np.zeros(k+2))
model['c'][n_up] = 1.0

Enlarge bounds on x, add inf bounds on the new added k+2 variables
model['blx'] = np.append(model['blx'], np.full(k+2, -1.e20, dtype=float))
model['bux'] = np.append(model['bux'], np.full(k+2, 1.e20, dtype=float))

Enlarge linear constraints
Get the aparsity pattern of F

row, col = np.nonzero(F)
val = F[row, col]

Convert to 1-based and move row down by m
row = row + 1 + m_up
col = col + 1

Add coefficient of y, t and s to the existing linear coefficient A
The result is
[A, 0, 0, 0;
F, 0, -I, 0;
0, 0, 0, 1]

row = np.append(row, np.arange(m_up+1, m_up+k+1+1))
col = np.append(col, np.arange(n_up+2, n_up+k+1+1+1))
val = np.append(val, np.append(np.full(k, -1.0, dtype=float), 1.0))
model['linear']['irowa'] = np.append(model['linear']['irowa'], row)
model['linear']['icola'] = np.append(model['linear']['icola'], col)
model['linear']['a'] = np.append(model['linear']['a'], val)

model['linear']['bl'] = np.append(model['linear']['bl'],
np.append(np.zeros(k), 1.0))

model['linear']['bu'] = np.append(model['linear']['bu'],
np.append(np.zeros(k), 1.0))

Enlarge cone constraints
model['cone']['type'].extend('R')
group = np.zeros(k+2, dtype=int)
group[0] = n_up + 1
group[1] = n_up + 1 + k + 1
group[2:] = np.arange(n_up+2, n_up+k+1+1)
model['cone']['group'].append(group)

9

return model

Note that in the above function, we require the input to be the factor of V instead of V because of
two reasons:

• In some cases, this factorization is already avaliable or easy to compute from the user, for
example, when user is using factor-based expected returns, risk and correlations, he should
already have V = B ∗CF ∗BT +Diag(rv), then a factorization is a decomposition of a much
smaller matrix CF (factor covariance).

• In many cases, V is not changing during modifications of models, for example, when adding
1/2∗µ∗xTV x+qTx with different µ, users do not need to factorize V every time they change
µ.

Once the objective of (4) has been added, we could use the following function to add the long-only
constraint

eTx = 1 and x ≥ 0.

[12]: def add_longonlycon(model, n, b=None):
"""
Add long-only constraint to model
If no b (benchmark) presents, add sum(x) = 1, x >= 0
If b presents, add sum(x) = 0, x + b >= 0
"""

Up-to-date problem size
m = model['m']

No of constraints increased by 1
model['m'] = model['m'] + 1

Bound constraint: x >=0 or x >= -b
if b is not None:

model['blx'][0:n] = -b
else:

model['blx'][0:n] = np.zeros(n)

Linear constraint: e'x = 1 or e'x = 0
if b is not None:

model['linear']['bl'] = np.append(model['linear']['bl'],
np.full(1, 0.0, dtype=float))

model['linear']['bu'] = np.append(model['linear']['bu'],
np.full(1, 0.0, dtype=float))

else:
model['linear']['bl'] = np.append(model['linear']['bl'],

np.full(1, 1.0, dtype=float))
model['linear']['bu'] = np.append(model['linear']['bu'],

np.full(1, 1.0, dtype=float))

model['linear']['irowa'] = np.append(model['linear']['irowa'],

10

np.full(n, m+1, dtype=int))
model['linear']['icola'] = np.append(model['linear']['icola'],

np.arange(1, n+1))
model['linear']['a'] = np.append(model['linear']['a'],

np.full(n, 1.0, dtype=float))

return model

By using the functions above, we can easily build the efficient frontier as follows.

[13]: def ef_lo_basic(n, r, V, step=None):
"""
Basic model to build efficient frontier with long-only constraint
by solving:

min -r'*x + mu * x'Vx
s.t. e'x = 1, x >= 0

Parameters

n: number of assets
r: expected return
V: covariance matrix
step: define smoothness of the curve of efficient frontier,

mu would be generated from [0, 2000] with step in default

Output:

risk: a vector of risk sqrt(x'Vx) with repect to certain mu
rtn: a vector of expected return r'x with repect to certain mu
"""

Set optional argument
if step is None:

step = 2001

Factorize V for just one time, use the factorization in the rest of the code
Eigenvalue decomposition on dense V = U*Diag(lamda)*U' to get V = F'*F

F = factorize(V)

risk = np.empty(0, float)
rtn = np.empty(0, float)

for mu in np.linspace(0.0, 2000.0, step):
Initialize a data structure for build the model

model = model_init(n)

Quadratic objective function
muf = F * mt.sqrt(2.0*mu)

11

model = add_qobj(model, muf, -r)

Add long-only constraint
model = add_longonlycon(model, n)

Now use model to feed NAG socp solver
handle = set_nag(model)

Call socp interior point solver
Mute warnings and do not count results from warnings

wn.simplefilter('error', utils.NagAlgorithmicWarning)
try:

slt = opt.handle_solve_socp_ipm(handle)

Compute risk and return from the portfolio
risk = np.append(risk, mt.sqrt(slt.x[0:n].dot(V.dot(slt.x[0:n]))))
rtn = np.append(rtn, r.dot(slt.x[0:n]))

except utils.NagAlgorithmicWarning:
pass

Destroy the handle:
opt.handle_free(handle)

return risk, rtn

[14]: # Build efficient frontier and plot the result
ab_risk, ab_rtn = ef_lo_basic(n, r, V, 500)
plt.plot(ab_risk*100.0, ab_rtn*100.0)
plt.ylabel('Total Expected Return (%)')
plt.xlabel('Absolute Risk (%)')
plt.show()

12

6.2 Maximizing the Sharpe ratio
The Sharpe ratio is defined as the ratio of return of portfolio and standard deviation of the portfolio’s
excess return. It is usually used to measure the efficiency of a portfolio. Find the most efficient
portfolio is equivalent to solve the following optimization problem.

minimize
x∈ℜn

√
xTV x
rT x

subject to eTx = 1,

x ≥ 0.

(9)

By replacing x with y
λ , λ > 0, model (9) is equivalent to

minimize
y∈ℜn,λ∈ℜ

yTV y

subject to eT y = λ,

rT y = 1,
y ≥ 0,
λ ≥ 0.

(10)

Problem (10) is similar to problem (4) in the sense that they both have a quadratic objective
function and linear constraints. We could reuse most of the functions above since the reformulation
is almost the same except for the definition of linear constraints. For that purpose, we need to
following function.

[15]: def add_sr_lincon(model, r, n):
"""

13

Add linear constraints for Sharpe ratio problem
e'y = lamda, y >= 0, r'y = 1, lamda >= 0
Enlarge model by 1 more variable lamda
Return: model and index of lambda in the final result, need it to

reconstruct the original solution
"""

Up-to-date problem size
m_up = model['m']
n_up = model['n']

Add one more var and two more linear constraints
model['n'] = model['n'] + 1
model['m'] = model['m'] + 2

Enlarge c by one parameter 0.0
model['c'] = np.append(model['c'], 0.0)

Bounds constraints on y
model['blx'][0:n] = np.zeros(n)

Set bound constraints on lamda
model['blx'] = np.append(model['blx'], 0.0)
model['bux'] = np.append(model['bux'], 1.e20)

Add e'y = lamda
row = np.full(n+1, m_up+1, dtype=int)
col = np.append(np.arange(1, n+1), n_up+1)
val = np.append(np.full(n, 1.0, dtype=float), -1.0)

Add r'y = 1
row = np.append(row, np.full(n, m_up+2, dtype=int))
col = np.append(col, np.arange(1, n+1))
val = np.append(val, r)

Update model
model['linear']['irowa'] = np.append(model['linear']['irowa'], row)
model['linear']['icola'] = np.append(model['linear']['icola'], col)
model['linear']['a'] = np.append(model['linear']['a'], val)

Bounds on linear constraints
model['linear']['bl'] = np.append(model['linear']['bl'],

np.append(np.zeros(1), 1.0))
model['linear']['bu'] = np.append(model['linear']['bu'],

np.append(np.zeros(1), 1.0))

return model, n_up

14

Now we can call the NAG SOCP solver as follows.

[16]: def sr_lo_basic(n, r, V):
"""
Basic model to calculate efficient portfolio that maximize the Sharpe ratio
min y'Vy
s.t. e'y = lamda, y >= 0, r'y = 1, lamda >= 0
Return efficient portfolio y/lamda and corresponding risk and return
"""

Factorize V for just one time, use the factorization in the rest of the code
Eigenvalue decomposition on dense V = U*Diag(lamda)*U' to get V = F'*F

F = factorize(V)

Initialize a data structure for build the model
model = model_init(n)

Quadratic objective function
muf = F * mt.sqrt(2.0)

model = add_qobj(model, muf)

Add linear constraints
model, lamda_idx = add_sr_lincon(model, r, n)

Now use model to feed NAG socp solver
handle = set_nag(model)

Call socp interior point solver
slt = opt.handle_solve_socp_ipm(handle)

sr_risk = mt.sqrt(slt.x[0:n].dot(V.dot(slt.x[0:n])))/slt.x[lamda_idx]
sr_rtn = r.dot(slt.x[0:n])/slt.x[lamda_idx]

return sr_risk, sr_rtn, slt.x[0:n]/slt.x[lamda_idx]

[17]: # Compute the most efficient portfolio and plot result.
sr_risk, sr_rtn, sr_x = sr_lo_basic(n, r, V)
plt.plot(ab_risk*100.0, ab_rtn*100.0, label='Efficient frontier')
plt.plot([sr_risk*100], [sr_rtn*100], 'rs',

label='Portfolio with maximum Sharpe ratio')
plt.plot([sr_risk*100, 0.0], [sr_rtn*100, 0.0], 'r-', label='Capital market␣
↪→line')

plt.axis([min(ab_risk*100), max(ab_risk*100), min(ab_rtn*100), max(ab_rtn*100)])
plt.ylabel('Total Expected Return (%)')
plt.xlabel('Absolute Risk (%)')
plt.legend()
plt.show()

15

7 Portfolio optimization with tracking-error constraint
To avoid taking unnecessary risk when beating a benchmark, the investors commonly impose a
limit on the volatility of the deviation of the active portfolio from the benchmark, which is also
known as tracking-error volatility (TEV) [?]. The model to build efficient frontier in excess-return
space is

maximize
x∈ℜn

rTx

subject to eTx = 0,
xTV x ≤ tev,

(11)

where tev is a limit on the track-error. Roll [?] noted that problem (11) is totally independent
of the benchmark and leads to the unpalatable result that the active portfolio has systematically
higher risk than the benchmark and is not optimal. Therefore, in this section we solve a more
advanced model by taking absolute risk into account as follows.

minimize
x∈ℜn

−rTx+ µ(x+ b)TV (x+ b)

subject to eTx = 0,
xTV x ≤ tev,
x+ b ≥ 0,

(12)

where b is a benchmark portfolio. In this demonstration, it is generated synthetically. Note here
we use the same covariance matrix V for tev and absolute risk measurement for demonstration
purpose. In practice one could use different covariance matrices from different markets.

16

[18]: # Generate a benchmark portfolio from efficient portfolio that
maximizes the Sharpe ratio
Perturb x
b = sr_x + 1.e-1
Normalize b
b = b/sum(b)

Compute risk and return at the benchmark
b_risk = mt.sqrt(b.dot(V.dot(b)))
b_rtn = r.dot(b)

Note that same as in problem (4), the objective function in (12) is quadratic, so we can use
add_qobj() to add it to the model. But problem (12) has a quadratic constraint, which makes it
a quadratically constrained quadratic programming (QCQP). Following a similar procedure to the
transformation of constraint in (6), we can write a function that can be reused repeatedly to add
general quadratic constraints.

[19]: def add_qcon(model, F, q=None, r=None):
"""
Add quadratic contraint defined as: 1/2 * x'Vx + q'x + r <= 0,
which is equivalent to t + q'x + r = 0, 1/2 * x'Vx <= t,
transformed to second order cone by adding artificial variables

Parameters

model: a dict with structure:

{
'n': int,
'm': int,
'c': float numpy array,
'blx': float numpy array,
'bux': float numpy array,
'linear': {'bl': float numpy array,

'bu': float numpy array,
'irowa': int numpy array,
'icola': int numpy array,
'a': float numpy array},

'cone' : {'type': character list,
'group': nested list of int numpy arrays}

}
F: float 2d numpy array

kxn dense matrix that V = F'*F where k is the rank of V

q: float 1d numpy array
n vector

r: float scalar

17

Returns

model: modified structure of model

Note: imput will not be checked
"""

Default parameter
if r is None:

r = 0.0

Get the dimension of F (kxn)
k, n = F.shape

Up-to-date problem size
m_up = model['m']
n_up = model['n']

Then k + 2 more variables need to be added together with
k + 2 linear constraints and a rotated cone contraint
Enlarge the model

model['n'] = model['n'] + k + 2
model['m'] = model['m'] + k + 2

All the added auxiliary variables do not take part in obj
So their coeffients in obj are all zeros.

model['c'] = np.append(model['c'], np.zeros(k+2))

Enlarge bounds on x, add inf bounds on the new added k+2 variables
model['blx'] = np.append(model['blx'], np.full(k+2, -1.e20, dtype=float))
model['bux'] = np.append(model['bux'], np.full(k+2, 1.e20, dtype=float))

Enlarge linear constraints
row, col = np.nonzero(F)
val = F[row, col]

Convert to 1-based and move row down by m_up
Add Fx = y and s = 1
[x,t,y,s]

row = row + 1 + m_up
col = col + 1
row = np.append(np.append(row, np.arange(m_up+1, m_up+k+1+1)), m_up+k+1+1)
col = np.append(np.append(col, np.arange(n_up+2, n_up+k+1+1+1)), n_up+1)
val = np.append(np.append(val, np.append(np.full(k, -1.0,

dtype=float), 1.0)), 1.0)
model['linear']['irowa'] = np.append(model['linear']['irowa'], row)
model['linear']['icola'] = np.append(model['linear']['icola'], col)

18

model['linear']['a'] = np.append(model['linear']['a'], val)

model['linear']['bl'] = np.append(np.append(model['linear']['bl'],
np.append(np.zeros(k), 1.0)),␣

↪→-r)
model['linear']['bu'] = np.append(np.append(model['linear']['bu'],

np.append(np.zeros(k), 1.0)),␣
↪→-r)

Add t + q'x + r = 0
if q is not None:

model['linear']['irowa'] = np.append(model['linear']['irowa'],
np.full(n, m_up+k+2, dtype=int))

model['linear']['icola'] = np.append(model['linear']['icola'],
np.arange(1, n+1))

model['linear']['a'] = np.append(model['linear']['a'], q)

Enlarge cone constraints
model['cone']['type'].extend('R')
group = np.zeros(k+2, dtype=int)
group[0] = n_up + 1
group[1] = n_up + 1 + k + 1
group[2:] = np.arange(n_up+2, n_up+k+1+1)
model['cone']['group'].append(group)

return model

By using the function above, we can easily build the efficient frotier with TEV constraint as follows.

[20]: def tev_lo(n, r, V, b, tev, step=None):
"""
TEV contrained portforlio optimization with absolute risk taken into
consideration by solving:
min -r'y + mu*(b+y)'V(b+y)
s.t. sum(y) = 0, y+b >=o, y'Vy <= tev
"""

Set optional argument
if step is None:

step = 2001

Factorize V for just one time, use the factorization in the rest of the code
Eigenvalue decomposition on dense V = U*Diag(lamda)*U' to get V = F'*F

F = factorize(V)

risk = np.empty(0, float)
rtn = np.empty(0, float)

19

for mu in np.linspace(0.0, 2000.0, step):
Initialize a data structure for build the model

model = model_init(n)

Add long-only constraint
model = add_longonlycon(model, n, b)

Quadratic objective function
muf = F * mt.sqrt(2.0*mu)
mur = 2.0*mu*V.dot(b) - r

model = add_qobj(model, muf, mur)

Add Quadratic constraint y'Vy <= tev
F_hf = F * mt.sqrt(2.0)
model = add_qcon(model, F_hf, r=-tev)

Now use model to feed NAG socp solver
handle = set_nag(model)

Call socp interior point solver
Mute warnings and do not count results from warnings

wn.simplefilter('error', utils.NagAlgorithmicWarning)
try:

slt = opt.handle_solve_socp_ipm(handle)

Compute risk and return from the portfolio
risk = np.append(risk, mt.sqrt((slt.x[0:n]+b).dot(V.dot(slt.x[0:

↪→n]+b))))
rtn = np.append(rtn, r.dot(slt.x[0:n]+b))

except utils.NagAlgorithmicWarning:
pass

Destroy the handle:
opt.handle_free(handle)

return risk, rtn

[21]: # Set limit on tracking-error
tev = 0.000002
Solve the model
tev_risk, tev_rtn = tev_lo(n, r, V, b, tev, step=500)
Plot the result
plt.figure(figsize=(7.5, 5.5))
plt.plot(ab_risk*100.0, ab_rtn*100.0, label='Classic efficient frontier')
plt.plot([sr_risk*100], [sr_rtn*100], 'rs',

label='Portfolio with maximum Sharpe ratio')

20

plt.plot([sr_risk*100, 0.0], [sr_rtn*100, 0.0], 'r-', label='Capital market␣
↪→line')

plt.plot(b_risk*100, b_rtn*100, 'r*', label='Benchmark portfolio')
plt.plot(tev_risk*100.0, tev_rtn*100.0, 'seagreen',

label='Efficient frontier with tev constraint')

plt.axis([min(ab_risk*100), max(ab_risk*100), min(tev_rtn*100),␣
↪→max(ab_rtn*100)])

plt.ylabel('Total Expected Return (%)')
plt.xlabel('Absolute Risk (%)')
plt.legend()
plt.show()

8 Conclusion
In this notebook, we demonstrated how to use NAG Library to solve various models in portfolio
optimization. One could take some of the functions mentioned above and start to build their own
model immediately. It is worth pointing out that the versatility of SOCP is not just limited to the
models mentioned here. It covers a lot more problems and constraints. For example, DeMiguel et
al. [?] discussed portfolio optimization with norm constraint, which can be easily transformed into
an SOCP problem. We refer readers to the NAG Library documentation [?] on SOCP solver and

21

[?, ?] for more details.

9 References
[1] Alizadeh Farid and Goldfarb Donald, “Second-order cone programming’ ’, Mathematical pro-
gramming, vol. 95, number 1, pp. 3–51, 2003.

[2] Lobo Miguel Sousa, Vandenberghe Lieven, Boyd Stephen et al., “Applications of second-order
cone programming’ ’, Linear algebra and its applications, vol. 284, number 1-3, pp. 193–228, 1998.

[3] Jorion Philippe, “Portfolio optimization with tracking-error constraints’ ’, Financial Analysts
Journal, vol. 59, number 5, pp. 70–82, 2003.

[4] Roll Richard, “A mean/variance analysis of tracking error’ ’, The Journal of Portfolio Manage-
ment, vol. 18, number 4, pp. 13–22, 1992.

[5] DeMiguel Victor, Garlappi Lorenzo, Nogales Francisco J et al., “A generalized approach to port-
folio optimization: Improving performance by constraining portfolio norms’ ’, Management science,
vol. 55, number 5, pp. 798–812, 2009.

[6] Numerical Algorithms Group, “NAG documentation’ ’, 2019. online

22

https://www.nag.com/numeric/fl/nagdoc_latest/html/frontmatter/manconts.html

	Modelling techniques in portfolio optimization using second-order cone programming (SOCP) in the NAG Library
	Correct Rendering of this notebook
	Note for the users of the NAG Library Mark 27.1 onwards
	Introduction
	Data preparation
	Classic Mean-Variance Model
	Efficient Frontier
	Maximizing the Sharpe ratio

	Portfolio optimization with tracking-error constraint
	Conclusion
	References

