
NAG DMC nagdmc waid

Decision Tree: nagdmc waid

Purpose

nagdmc waid approximates data by using a robust regression tree by using the weighted automatic
inference detection (WAID) method.

Declaration

#include <nagdmc.h>

void nagdmc waid(long rec1, long nvar, long nrec, long dblk, double data[],
long nxvar, long xvar[], long yvar, long ncat[], long bcat[],
long mns, long mnc, int wscheme, double c, long maxit, double tol,
double alpha, long *iproot, int *info);

Parameters

1: rec1 – long Input
On entry: the index in the data of the first data record used in the analysis.
Constraint: rec1 ≥ 0.

2: nvar – long Input
On entry: the number of variables in the data.
Constraint: nvar > 1.

3: nrec – long Input
On entry: the number of consecutive records, beginning at rec1, used in the analysis.
Constraint: nrec > 1.

4: dblk – long Input
On entry: the total number of records in the data block.
Constraint: dblk ≥ rec1 + nrec.

5: data[dblk ∗ nvar] – double Input
On entry: the data values for the jth variable (for j = 0, 1, . . . ,nvar−1) are stored in data[i∗nvar+j],
for i = 0, 1, . . . ,dblk− 1.

6: nxvar – long Input
On entry: the number of independent variables. If nxvar = 0 then all variables in the data,
excluding yvar, are treated as independent variables.
Constraint: 0 ≤ nxvar < nvar.

7: xvar[nxvar] – long Input
On entry: the indices indicating the position in data in which values of the independent variables
are stored. If nxvar = 0 then xvar must be 0, and the indices of independent variables are given by
j = 0, 1, . . . ,nvar− 1; j 6= yvar.
Constraints: if nxvar > 0, 0 ≤ xvar[i] < nvar, for i = 0, 1, . . . ,nxvar − 1; otherwise xvar must be
0.

8: yvar – long Input
On entry: the index in data in which values of the dependent variable are stored.
Constraints: 0 ≤ yvar < nvar; if nxvar > 0, yvar 6= xvar[i], for i = 0, 1, . . . ,nxvar− 1.

9: ncat[nvar] – long Input
On entry: ncat[i] contains the number of categories in the ith variable, for i = 0, 1, . . . ,nvar− 1. If
the ith variable is continuous, ncat[i] must be set equal to zero.
Constraints: ncat[i] ≥ 0, for i = 0, 1, . . . ,nvar− 1, (i 6= yvar); ncat[yvar]= 0.

nagdmc waid.1

NAG DMC nagdmc waid

10: bcat[nvar] – long Input
On entry: bcat[i] contains the base level value for the ncat[i] categories on the ith variable. If
ncat[i] > 0, for i = 0, 1, . . . ,nvar− 1, the categorical values on the ith variable are given by
bcat[i] + j, for j = 0, 1, . . . ,ncat[i]− 1; otherwise bcat[i] is not referenced. If the base level for
each categorical variable is zero, bcat can be 0.

11: mns – long Input
On entry: if the number of data records at a node is greater than or equal to mns, a partition of
data is attempted; otherwise a leaf node is forced.
Constraint: 1 < mns < nrec.

12: mnc – long Input
On entry: during the search for an optimal partition of data at a node each candidate partition
must contain at least mnc data records.
Constraint: 1 ≤ mnc ≤ mns/2.

13: wscheme – int Input
On entry: if wscheme = 0, the unweighted mean value of the dependent variable is computed at
each node; otherwise the value of wscheme determines the robust weighting scheme used to compute
estimates of the mean value of the dependent variable for data at each node, the available values
are:

1 – Andrew’s sine wave;
2 – Tukey’s bi-weight;
3 – Huber’s weight function.

Constraint: wscheme ∈ {0, 1, 2, 3}.

14: c – double Input
On entry: if wscheme = 0, c is not referenced; otherwise the value of c determines the value of the
free parameter in the weight function indicated by wscheme.
Constraint: c > 0.0.

15: maxit – long Input
On entry: if wscheme = 0, maxit is not referenced; otherwise the maximum number of iterations to
use in the iterated weighted least squares method used to compute the robust estimates of mean.
Constraint: maxit > 0.

16: tol – double Input
On entry: if wscheme = 0, tol is not referenced; otherwise the tolerance for convergence used in
the iterated wieghted least squares method.
Constraint: tol > 0.0.

17: alpha – double Input
On entry: the value of the pruning constant used in the binary tree.
Constraint: alpha ≥ 0.0.

18: iproot – long * Output
On exit: iproot is an integer cast of the memory location pointing to the root node in the tree.
This value is passed to the functions described in ‘See Also’. Information on the detail of a decision
tree can be found by using the value of iproot.

Detail of partitions in a binary regression tree are available by using in a C program the code:
RTNode *proot;
proot = (RTNode *)iproot;

where RTNode is a C structure with the following members:

type – int

if the node is a leaf, type is set to one; otherwise type is set to zero;

ndata – long

nagdmc waid.2

NAG DMC nagdmc waid

the number of data records at this node;

ybar – long

the estimate of the mean of the dependent variable over data records at the node.

yvar – double

the variance of ybar;

parent – RTNode *

if this node is not the root of a binary tree, a pointer to the parent node; otherwise parent is
set equal to zero.

If type = 1, the remaining structure members are set equal to dummy values and should not be
referenced; otherwise the following information is available:

svar – long

the index in the data of the variable on which records are partitioned;

ncats – long

if independent variable svar is categorical, the number of categories on variable j∗; otherwise
zero;

sval – double

if ncats = 0, sval gives the scalar value of the test on variable svar; otherwise sval is not
referenced;

lr – char []

if ncats = 0, lr is not referenced; otherwise it is an array of ncats elements, the value of lr[i]
determines the direction in the binary tree taken by data records at the node with category
bcat[svar] + i on variable svar, for i = 0, 1, . . . , ncats− 1. The possible values for lr[i] are:

’l’ data records at the node with category value bcat[svar] + i on svar are sent to the
left child node;

’r’ data records at the node with category value bcat[svar] + i on svar are sent to the
right child node.

’a’ the ith category on svar is absent at this node.

rss – double

the value of the residual sum of squares;

left – RTNode *

a pointer to left child node;

right – RTNode *

a pointer to right child node.

A C source code example that accesses the information in a binary regression tree is given in
‘Explanatory Code’.

19: info – int * Output

On exit: info gives information on the success of the function call:

0: the function successfully completed its task.

i; i = 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, . . . , 17: the specification of the ith formal parameter was
incorrect.

99: the function failed to allocate enough memory.

100: an internal error occurred during the execution of the function.

nagdmc waid.3

NAG DMC nagdmc waid

Notation

nrec the number of records, p.
nxvar the number of variables, m.
ncat the number of categories on variables, cy and cj , for j = 1, 2, . . . ,m.
bcat the base level categories, by and bj , for j = 1, 2, . . . ,m.
mns the minimum number of records, s, required for a partition to be attempted.
mnc the minimum number of records, t, at each child.
c the free parameter in the weight function, c.
alpha the pruning constant, α.

Description

Let xi denote the values of m independent variables and yi the value of the dependent variable for
the ith data record at a node A, for i = 1, 2, . . . , p. The jth independent variable can be continuous
or categorical and its ith value is denoted by xij , for j = 1, 2, . . . ,m. If the jth independent variable
is categorical it takes the cj consecutive values bj , bj +1, . . . , bj +cj−1, for a base level value bj . The
dependent variable is a categorical variable with cy consecutive values by, by +1, . . . , by + cy − 1, for
a base level value by. Furthermore, let o denote the modal category and lk be the number of records
that belong to the kth category, for k = 1, 2, . . . , cy, over the values of the dependent variable at
node A.

B C

A

D E

Figure 1: Graphical representation of a binary tree showing parent nodes connected by
lines to their child nodes. The root node, node A, is associated with all data records
and is the only node not to have a parent node. Nodes C, D and E do not have child
nodes and are known as leaf nodes. Node B is neither the root node nor a leaf node
and is known as an internal node. Given positive values for the scalars s and t ≤ s/2,
a partition of p ≥ s data records at a parent node into q ≥ t records at one child node
and r ≥ t records at the other child node is based on the outcome of a test at the parent
node.

Consider the case of partitioning p data records at a parent node A into child nodes B and C such
that each record at node A is sent to either node B or node C (see Figure 1). Let s be the minimum
number of data records at a parent node required to partition data. If p < s, a partition of data is
not computed; otherwise a data partition is defined by computing a univariate test on independent
variables. Two kinds of test are available. Firstly, a test on a continuous independent variable j
sends the ith data record at the parent node to the left child node if xij ≤ u and otherwise to
the right child node, for a value u that minimises a criterion and sends at least t data records to
left and right child nodes. Secondly, a test on a categorical independent variable j sends the ith
data record at the parent node to the child node determined by the binary partition of category
values that minimises a criterion and sends at least t data records to left and right child nodes. In
both cases, the criterion most often used in a binary regression tree is based on a sum-of-squares
criterion.

The test chosen at parent node A is the univariate test which partitions p ≥ s records at a node A

nagdmc waid.4

NAG DMC nagdmc waid

into q ≥ t records at child node B and r ≥ t records at child node C and minimises the criterion:∑
i∈B

wi (yi − ȳB)2+
∑
i∈C

wi (yi − ȳC)2 , (1)

where ȳB and ȳC are the weighted means of the dependent variable of data associated with nodes
B and C respectively, and wi is found by solving for a general node Z:∑

i∈Z

wi ((yi − ȳZ)/σ̂Z) = 0,

using median absolute deviation scaling, σ̂Z , and an iterative weighted least squares procedure
determined by,

wi =
ψ ((yi − ȳZ)/σ̂Z)

(yi − ȳZ)σ̂Z

,

ȳZ =

∑
i∈Z

wiyi∑
i∈Z

wi

,

for a function ψ(·) given by one of:

(a) Andrew’s sine wave: if |t| ≤ πc, ψ(t) = sin(t/c); otherwise 0;
(b) Tukey’s bi-weight: if |t| ≤ c, ψ(t) = t(1− t/c2)2; otherwise 0;
(c) Huber’s weight function: max(−c,min(c, t));

and given a user-supplied value c.

In order to find the test that minimises (1), we separate the variance in the dependent variable for
data at node A into node B and node C:

Total scatter = Within-cluster scatter + Residual scatter,

where,

Total scatter =
∑
i∈A

wi (yi − ȳA)2 ,

Within-cluster scatter =
∑
i∈B

wi (yi − ȳB)2 +
∑
i∈C

wi (yi − ȳC)2 ,

Residual scatter =
∑
i∈B

wi (ȳB − ȳA)2 +
∑
i∈C

wi (ȳC − ȳA)2 .

Now, at node A the total scatter is a constant and, therefore, minimising the within-cluster scatter
is equivalent to maximising the residual scatter, which is more efficient computationally.

Given a successful partition of data records at node A and the value of a user-supplied scalar α,
node A is forced to become a leaf node if the following condition is satisfied:∑

i∈B

wi (yi − ȳB)2 +
∑
i∈C

wi (yi − ȳC)2∑
i∈A

wi (yi − ȳA)2
> 1 + α.

Once a partition of data at a parent node into left and right child nodes has been found, the process
continues recursively by considering partitions of data records at child nodes.

References and Further Reading

Brieman L. Friedman J. Olshen R. and Stone C. (1984) Classification and Regression Trees Belmont
Calif.

nagdmc waid.5

NAG DMC nagdmc waid

Explanatory Code

The following C function prints the memory locations of nodes in a tree and its parent node. The
type (leaf or internal) of each node is printed along with the detail of the partition at that node. If
the function is called with iproot as its second argument, the entire tree is printed.

#include <stdio.h>

void step_through(long bcat[], long node) {
long i, j;
RTNode *lnode;

lnode = (RTNode *)node;

if (lnode == 0) return;

printf("\n Node %8p"
"\n Parent %8p"
"\n type: %8i"
"\n svar: %8li"
"\n sval: %8.4f"
"\n giv: %8.4f"
"\n imp: %8.4f"
"\n yval: %8li"
"\n ndata: %8li",
lnode,lnode->parent,lnode->type,lnode->svar,lnode->sval,
lnode->giv,lnode->improve,lnode->yval,lnode->ndata);

j = 0 + (bcat != 0 ? bcat[lnode->svar] : 0);

if (lnode->ncats > 0) {
printf("\n lr: ");
for (i = 0; i < lnode->ncats; ++i) {

if (lnode->lr[i] != ABSENT)
printf(" Category %li goes %c;",j+i,lnode->lr[i]);

}
printf("\b");

}

printf("\n");

step_through(bcat,(long)(lnode->lchild));
step_through(bcat,(long)(lnode->rchild));

}

See Also

nagdmc free waid returns memory containing a binary regression tree to the operating system.
nagdmc load waid loads a binary regression tree into memory.
nagdmc save waid saves a binary regression tree to a binary file.
nagdmc predict waid classifies new data using a binary regression tree.
waid ex.c the example calling program.

nagdmc waid.6

	Purpose
	Declaration
	Parameters
	Notation
	Description
	References and Further Reading
	Explanatory Code
	See Also

