NAG DMC nagdmc_reg_tree

Decision Tree: nagdmc reg_tree

Purpose

nagdmc_reg_tree approximates data by using a binary regression tree.

Declaration

#include <nagdmc.h>

void nagdmc_reg tree(long recl, long nvar, long nrec, long dblk, double datal],
long nxvar, long xvar[], long yvar, long iwts, long ncatl[],
long bcat[], long mns, long mnc, double alpha,
long *iproot, int *info);

Parameters

1: recl — long Input
On entry: the index in the data of the first data record used in the analysis.

Constraint: recl > 0.

2: nvar — long Input
On entry: the number of variables in the data.

Constraint: nvar > 1.

3: nrec — long Input
On entry: the number of consecutive records, beginning at recl, used in the analysis.

Constraint: nrec > 1.

4: dblk — long Input
On entry: the total number of records in the data block.
Constraint: dblk > recl + nrec.

5: data[dblk x nvar] — double Input
On entry: the data values for the jth variable (for j = 0,1,...,nvar—1) are stored in data[ixnvar+7],
fori=0,1,...,dblk — 1.

6: nxvar — long Input

On entry: the number of independent variables. If nxvar = 0 then all variables in the data,
excluding yvar and, if iwts > 0, iwts, are treated as independent variables.

Constraint: 0 < nxvar < nvar.

7: xvar[nxvar| — long Input

On entry: the indices indicating the position in data in which values of the independent variables
are stored. If nxvar = 0 then xvar must be 0, and the indices of independent variables are given by
j=0,1,... ,nvar — 1; j # yvar and j # iwts.

Constraints: if nxvar > 0, 0 < xvar[i] < nvar, for i = 0,1,...,nxvar — 1; otherwise xvar must be
0.

8: yvar — long Input
On entry: the index in data in which values of the dependent variable are stored.
Constraints: 0 < yvar < nvar; if nxvar > 0, yvar # xvar[i], for i =0,1,... ,nxvar — 1.

9: iwts — long Input
On entry: if iwts = —1, no weights are used; otherwise iwts is the index in data in which the

weights are stored.

Constraints: —1 < iwts < nvar; iwts # yvar; and if nxvar > 0, iwts # xvar[i], for
1=0,1,...,nxvar — 1.

nagdmc_reg_tree.1

NAG DMC nagdmc_reg_tree

10:

11:

12:

13:

14:

15:

ncat[nvar] — long Input
On entry: ncat[i] contains the number of categories in the ith variable, for ¢ = 0,1,...,nvar — 1. If
the ith variable is continuous, ncat[i] must be set equal to zero.

Constraints: ncat[i] > 0, for i = 0,1,...,nvar — 1, (¢ # yvar); ncat[yvar|= 0.

bcat[nvar] — long Input
On entry: bcat[i] contains the base level value for the ncat[i] categories on the ith variable. If
ncat[i] > 0, for i =0,1,...,nvar — 1, the categorical values on the ith variable are given by
beat[i] + j, for 7 =0,1,...,ncat[i] — 1; otherwise bcat[i] is not referenced. If the base level for

each categorical variable is zero, beat can be 0.

mns — long Input

On entry: if the number of data records at a node is greater than or equal to mns, a partition of
data is attempted; otherwise a leaf node is forced.

Constraint: 1 < mns < nrec.

mnc — long Input

On entry: during the search for an optimal partition of data at a node each candidate partition
must contain at least mnc data records.

Constraint: 1 < mnc < mns/2.

alpha — double Input
On entry: the value of the pruning constant used in the binary tree.

Constraint: alpha > 0.0.

iproot — long * Output
On exit: iproot is an integer cast of the memory location pointing to the root node in the tree.
This value is passed to the functions described in ‘See Also’. Information on the detail of a decision
tree can be found by using the value of iproot.

Detail of partitions in a binary regression tree are available by using in a C program the code:

RTNode *proot;
proot = (RTNode *)iproot;

where RTNode is a C structure with the following members:
type — int
if the node is a leaf, type is set to one; otherwise type is set to zero;
ndata — long
the number of data records at this node;
ybar — double
the estimate of the mean of the dependent variable over data records at the node.
yvar — double

the variance of ybar;

parent — RTNode *

if this node is not the root of a binary tree, a pointer to the parent node; otherwise parent is
set equal to zero.

If type = 1, the remaining structure members are set equal to dummy values and should not be
referenced; otherwise the following information is available:

svar — long

the index in the data of the variable on which records are partitioned;

ncats — long

if independent variable svar is categorical, the number of categories on variable j*; otherwise
Zero;

sval — double

nagdmc_reg_tree.2

NAG DMC nagdmc_reg_tree

if ncats = 0, sval gives the scalar value of the test on variable svar; otherwise sval is not
referenced;
1r — char []

if ncats = 0, 1r is not referenced; otherwise it is an array of ncats elements, the value of 1r[i]
determines the direction in the binary tree taken by data records at the node with category
bcat[svar] + 4 on variable svar, for i = 0,1,...,ncats — 1. The possible values for 1r[i] are:

1’ data records at the node with category value beat[svar| 4+ ¢ on svar are sent to the
left child node;

’r’ data records at the node with category value bcat[svar| 4+ ¢ on svar are sent to the
right child node.

’a’ the ith category on svar is absent at this node.

rss — double

the value of the residual sum of squares;

lchild — RTNode =*

a pointer to left child node;

rchild — RTNode *
a pointer to right child node.
A C source code example that accesses the information in a binary regression tree is given in
‘Explanatory Code’.
16: info — int * Output

On exit: info gives information on the success of the function call:

0: the function successfully completed its task.

i; 1 = 1,2,3,4,6,7,...,10,12,13,14: the specification of the ith formal parameter was
incorrect.

99: the function failed to allocate enough memory.

100: an internal error occurred during the execution of the function.

Notation
nrec the number of records, p.
nxvar the number of variables, m.
ncat the number of categories on variables, ¢, and ¢;, forj=1,2,...,m.
bcat the base level categories, by and bj, for j=1,2,...,m.
mns the minimum number of records, s, required for a partition to be attempted.
mnc the minimum number of records, ¢, at each child.
alpha the pruning constant, a.
Description

Let 2, denote the values of m independent variables and y; the value of the dependent variable for
the ith data record at a node A, fori =1,2,...,p. The jth independent variable can be continuous
or categorical and its ith value is denoted by z,;, for j = 1,2,..., m. If the jth independent variable
s categorical it takes the c; consecutive values b;,b;+1,...,b;+c;—1, for a base level value b;. The
dependent variable is a categorical variable with ¢, consecutive values b,,b, +1,...,b, +¢, —1, for
a base level value b, . Furthermore, let o denote the modal category and [;, be the number of records
that belong to the kth category, for k =1,2,...,¢,, over the values of the dependent variable at

node A.

y?

nagdmec_reg_tree.3

NAG DMC nagdmc_reg_tree

Figure 1: Graphical representation of a binary tree showing parent nodes connected by
lines to their child nodes. The root node, node A, is associated with all data records
and is the only node not to have a parent node. Nodes C, D and E do not have child
nodes and are known as leaf nodes. Node B is neither the root node nor a leaf node
and is known as an internal node. Given positive values for the scalars s and t < s/2,
a partition of p > s data records at a parent node into ¢ >t records at one child node
and r >t records at the other child node is based on the outcome of a test at the parent
node.

Consider the case of partitioning p data records at a parent node A into child nodes B and C' such
that each record at node A is sent to either node B or node C (see Figure 1). Let s be the minimum
number of data records at a parent node required to partition data. If p < s, a partition of data is
not computed; otherwise a data partition is defined by computing a univariate test on independent
variables. Two kinds of test are available. Firstly, a test on a continuous independent variable j
sends the ith data record at the parent node to the left child node if z;; < u and otherwise to
the right child node, for a value u that minimises a criterion and sends at least ¢ data records to
left and right child nodes. Secondly, a test on a categorical independent variable j sends the ith
data record at the parent node to the child node determined by the binary partition of category
values that minimises a criterion and sends at least ¢ data records to left and right child nodes. In
both cases, the criterion most often used in a binary regression tree is based on a sum-of-squares

criterion.

The test chosen at parent node A is the univariate test which partitions p > s records at a node A
into ¢ > t records at child node B and r > t records at child node C' and minimises the criterion:

Z (y; — 7p)° + Z (v — c)”,

i€B ieC

where y and g are the means of the dependent variable of data associated with nodes B and C
respectively. In order to find the test that minimises the above expression, we separate the variance
in the dependent variable for data at node A into node B and node C"

Total scatter = Within-cluster scatter + Residual scatter,

where,
Total scatter = Z (y; — QA)Z)
iEA
Within-cluster scatter = Z (y; — g3)2 + Z (y; — ﬂc)Q)
i€B ieC

Residual scatter = ng (5 — QA)Q +ne (Jo — Z?A)Q .

Now, at node A the total scatter is a constant and, therefore, minimising the within-cluster scatter
is equivalent to maximising the residual scatter, which is more efficient computationally.

nagdmc_reg_tree.4

NAG DMC nagdmc_reg_tree

Given a successful partition of data records at node A and the value of a user-supplied scalar «,
node A is forced to become a leaf node if the following condition is satisfied:

Z (y; — 3?13)2 + Z (y; — gc)2

i€B eC

Z (y; — ?7A)2

i€A

>1+4 a.

Once a partition of data at a parent node into left and right child nodes has been found, the process
continues recursively by considering partitions of data records at child nodes.

References and Further Reading

Brieman L. Friedman J. Olshen R. and Stone C. (1984) Classification and Regression Trees Belmont
Calif.

Explanatory Code

The following C function prints the memory locations of nodes in a tree and its parent node. The
type (leaf or internal) of each node is printed along with the detail of the partition at that node. If
the function is called with iproot as its second argument, the entire tree is printed.

#include <stdio.h>

step_through(long bcat[], long ipnode) {
long i, j;
RTNode x1lnode = (RTNode *)ipnode;

if (lnode == 0)
return;

printf("\n Node %8p"
"\n Parent %38p"
"\n type: %8i"
"\n svar: %81i"
"\n sval: %8.4f"
"\n rss: %8.4f"
"\n ybar: ¥%8.4f"
"\n yvar: %8.4f"
"\n ndata: %81i",
Inode,lnode->parent,lnode->type,lnode->svar,lnode->sval,
1node—>rss,1node—>ybar,1node—>yvar,1node—>ndata);

j =0+ (bcat != 0 ? bcat[lnode->svar] : 0);

if (lnode->ncats > 0) {

printf ("\n 1lr: ")
for (i=0; i<lnode->ncats; ++i) {
if (lnode->1r[i] !'= ’a’)

printf (" Cat. %1li goes %c;",j+i,lnode->1r[i]);

printf ("\n");

printf("\n");

step_through(bcat, (long) (lnode->1child));
step_through(bcat, (long) (lnode->rchild)) ;

}
See Also
nagdmec_free reg_tree returns memory containing a binary regression tree to the operating system.
nagdmc_load _reg_tree loads a binary regression tree into memory.
nagdmc_save_reg_tree saves a binary regression tree to a binary file.

nagdmec_reg_tree.5

NAG DMC nagdmc_reg_tree

nagdmc_predict_reg_tree predicts values for new data using a binary regression tree.
reg_tree_ex.c the example calling program.

nagdmec_reg_tree.6

	Purpose
	Declaration
	Parameters
	Notation
	Description
	References and Further Reading
	Explanatory Code
	See Also

