Probit Regression: nagdmc_probit_reg

Purpose

 $\mathbf{nagdmc_probit_reg}$ computes a probit regression model with p parameters and is a simplified interface to $\mathbf{nagdmc_binomial_reg}$ using a probit link function.

Declaration

Parameters

1:	rec1 – long On entry: the index in the data of the first data record used in the analysis. Constraint: $rec1 \ge 0$.	Input
2:	nvar $-\log$ On entry: the number of variables in the data. Constraint: nvar > 1 .	Input
3:	nrec – long On entry: the number of consecutive records, beginning at rec1 , used in the analysis. Constraint: nrec > 1.	Input
4:	dblk – long On entry: the total number of records in the data block. Constraint: dblk \geq rec1 + nrec .	Input
5:	data[dblk * nvar] - double On entry: the data values for the <i>j</i> th variable (for $j = 0, 1,, nvar-1$) are stored in data[<i>i</i> *n for $i = 0, 1,, dblk - 1$.	$Input \\ \mathbf{var}+j],$
6:	nxvar – long On entry: the number of independent variables. If nxvar = 0 then all variables in the excluding yvar and, if ≥ 0 , bdvar , are treated as independent variables. Constraint: $0 \leq \mathbf{nxvar} < \mathbf{nvar}$.	Input e data,
7:	$\mathbf{xvar}[\mathbf{nxvar}] - \mathbf{long}$ InputOn entry: the indices indicating the position in data in which values of the independent variables are stored. If $\mathbf{nxvar} = 0$ then \mathbf{xvar} must be 0, and the indices of independent variables are given by $j = 0, 1, \dots, \mathbf{nvar} - 1; j \neq \mathbf{yvar}$ and $j \neq \mathbf{bdvar}$.Constraints: if $\mathbf{nxvar} > 0, 0 \leq \mathbf{xvar}[i] < \mathbf{nvar}$, for $i = 0, 1, \dots, \mathbf{nxvar} - 1$; otherwise \mathbf{xvar} must be 0.	
8:	yvar – long On entry: the index in data in which values of the dependent variable are stored. Constraints: $0 \leq$ yvar $<$ nvar; if nxvar > 0 , yvar \neq xvar $[i]$, for $i = 0, 1,,$ nxvar -1 .	Input
9:	ycut - long	Input

On entry: if $ycut \neq 0$, the *y*-variable is transformed so that values $\langle ycut$ are set to zero and values $\geq ycut$ are set to one.

10:	bdvar - long Input
	On entry: an index indicating the position in data in which the binomial denominator is stored. If
	$\mathbf{bdvar} = -1$ a default value of one is used for all observations.

Constraint: $-1 \leq \mathbf{bdvar} < \mathbf{nvar}$.

$\mathbf{dev} - \mathtt{double}$	Output
	$\mathbf{dev} - \mathtt{double}$

On exit: the deviance from the fitted model.

12:df - long * Output

On exit: the degrees of freedom for the deviance.

$\mathbf{b}[p] - \mathtt{double}$ 13:

On exit: the parameter estimates. $\mathbf{b}[0]$ is the mean parameter. $\mathbf{b}[i]$ is the coefficient of the *i*th variable included in the model, for $i = 1, 2, \ldots, p-1$. If **nxvar** > 0 then the order the independent variables are added to the model is defined by **xvar**, otherwise the order is defined by indices in the data.

14:se[p] - double

On exit: the standard errors of the parameters in **b**.

 $\operatorname{cov}[p*(p+1)/2] - \operatorname{double}$ 15:

> On exit: the first p * (p+1)/2 elements of **cov** contain the upper triangular part of the variancecovariance matrix of the p parameters in **b**. They are stored packed by column, i.e., the covariance between the parameter estimate given in $\mathbf{b}[i]$ and the parameter estimate given in $\mathbf{b}[j]$, $j \ge i$, is stored in cov[j(j+1)/2 + i], for i = 0, 1, ..., p-1 and j = i, i+1, ..., p-1.

model[(3 * p * (p + 1))/2 + nvar + 14] - double16:

On exit: if not 0, information on the fitted model for use in the functions described in 'See Also'.

17:info - int *

On exit: info gives information on the success of the function call:

- -4: a model value has reached a boundary.
- 0: the function successfully completed its task.
- i; i = 1, 2, ..., 10: the specification of the *i*th formal parameter was incorrect.
- 42: invalid value for response variable.
- 43: invalid value for binomial denominator.
- 45: model has not converged.
- 57: there are no degrees of freedom for the error estimates.
- 58: the fit is exact, no error estimates.
- 59: more variables than observations.
- 98: there is an underlying computational problem (this is an unlikely error exit).
- 99: the function failed to allocate enough memory.

Notation

the number of observations, n .
the number of independent variables, $p-1$.
the independent variables, X , excluding the mean.
the dependent variable, y .
if $\mathbf{bdvar} \ge 0$, \mathbf{bdvar} is the index in the data that defines the binomial denominator, t.
the parameter estimates, $\hat{\beta}$.

Description

See the description for **nagdmc_binomial_reg**.

Output

Output

Output

Output

Output

References and Further Reading

Cook R D and Weisberg S (1982) Residuals and Influence in Regression Chapman and Hall. Cox D R (1983) Analysis of Binary Data Chapman and Hall McCullagh P and Nelder J A (1983) Generalized Linear Models Chapman and Hall.

See Also

nagdmc_binomial_reg	generalized linear model with binomial errors.
$\mathbf{nagdmc_extr_reg}$	computes fitted values, residuals and leverages for a regression.
nagdmc_probit_reg	simplified version of nagdmc_binomial_reg using a logit link
	and a restricted set of parameters.
$\mathbf{nagdmc_predict_reg}$	computes predictions given a fitted regression model.
$probit_reg_ex.c$	the example calling program.