Regression Predictions: nagdmc_predict_reg

Purpose

nagdmc_predict_reg gives the linear predictor, standard error of the linear predictor, a back transformed prediction and the standard error of the back transformation calculated from a previously fitted regression model. The regression model must be fitted using one of the following functions: nagdmc_linear_reg, nagdmc_binomial, nagdmc_poisson, nagdmc_basic_reg, nagdmc_logit, nagdmc_probit, nagdmc_loglinear or nagdmc_stepwise_reg.

Declaration

Parameters

1: model[] - double

Input

On entry: information on the fitted model obtained from one of the regression functions described in 'See Also'.

Constraint: model must not be 0.

2: data[] - double

Input

On entry: the data for a single observation. The data must be in the same format as used in the call to the analysis routine which created the **model** array.

Constraint: data must not be 0.

3: eta - double *

Output

On exit: if not 0, the estimated linear predictor.

4: seeta - double *

Output

On exit: if not 0, then the standard error of the linear predictor.

5: **pred** - double *

Output

On exit: if not 0, then the predicted value.

6: sepred - double *

Output

On exit: if not 0, then the standard error of the predicted value.

7: **vfob** - int

Input

On entry: If $\mathbf{vfob} = 1$ then the variance of future observations is used when calculating the standard errors reported in \mathbf{sepred} ; otherwise the variance of future observations is not used and $\mathbf{vfob} = 0$.

Constraint: $\mathbf{vfob} = 0 \text{ or } 1.$

8: **info** - int *

Output

On exit: info gives information on the success of the function call:

0: the function successfully completed its task.

i; i = 1, 2, 7: the specification of the ith formal parameter was incorrect.

46: information in **model** has been corrupted.

99: the function failed to allocate enough memory.

Notation

 $\begin{array}{ll} \textbf{data} & \text{vector of independent variables, } \{X_i:i=2,\cdots,p\}. \\ \textbf{eta} & \text{linear predictor, } \eta. \\ \textbf{seeta} & \text{standard error of the linear predictor, se}(\eta). \\ \textbf{pred} & \text{predicted value of the response variable, } \hat{y}. \\ \end{array}$

sepred standard error of the predicted value, $se(\hat{y})$.

 ${f vfob}$ indicator variable showing whether to use variance of future observations, I_y .

model all the model information from previous model fit including $\beta, C, g(.)$

and the error structure used.

Description

Let $\beta = \{\beta_i : i = 1, \dots, p\}$ be a row vector of p parameter estimates, with covariance matrix C, obtained from a generalized linear model with link function g(.) and a known error structure. Then given a row vector of p independent variables, $X = \{X_i : i = 1, \dots, p, X_1 = 1\}$ the linear predictor, η , and its standard error, $\operatorname{se}(\eta)$, corresponding to X, are given by

$$\eta = \beta X', \operatorname{se}(\eta) = \sqrt{XCX'}.$$

and the predicted value of the response variable, \hat{y} , and its standard error, $se(\hat{y})$, are given by

$$\hat{y} = g^{-1}(\eta), \text{ se}(\hat{y}) = \sqrt{\left(\frac{dg^{-1}(x)}{dx}\Big|_{\eta} \text{se}(\eta)\right)^2 + I_y \sigma_y^2}.$$

Where $I_y=0$ if the variance of future observations is not taken into account, and one otherwise. The variance of the future observations, σ_y depends on the error structure used, with

(i) Gaussian (Normal) error: $\sigma_y^2 = \text{residual mean square error (rms)}$

(ii) binomial error: $\sigma_y^2 = \hat{y}(1-\hat{y})$

(iii) poisson error: $\sigma_y^2 = \hat{y}$

References and Further Reading

McCullagh P and Nelder J A (1983) Generalized Linear Models Chapman and Hall.

See Also

nagdmc_basic_regnagdmc_binomial_regsimplified version of nagdmc_reg using a restricted set of parameters.generalized linear model with binomial errors.

nagdmc_extr_reg computes fitted values, residuals and leverages for a regression.

nagdmc_linear_reglinear model with Normal errors.simplified version of nagdmc_binomial_reg using a logit link and a

and a restricted set of parameters.

nagdmc_poisson_regnagdmc_probit_reggeneralized linear model with poisson errors.simplified version of nagdmc_binomial_reg using a probit link and a

restricted set of parameters.

nagdmc_stepwise_reg stepwise linear regression with Normal errors.

binomial_reg_ex.c the example calling program for a generalized linear model with binomial

linear_reg_ex.c the example calling program for linear regression.

poisson_reg_ex.c the example calling program for a generalized linear model with Poisson

errors.

stepwise_reg_ex.c the example calling program for stepwise linear regression.

 ${\it errors.}$