Decision Tree: nagdmc_predict_gini_tree

Purpose

nagdmc_predict_gini_tree uses a decision tree computed by nagdmc_gini_tree to predict values of
data records.

Declaration

Parameters

1: rec1 - long Input

On entry: the index in the data of the first data record used in the analysis.

Constraint: rec1 > 0.

2: nvar - long Input

On entry: the number of variables in the data.

Constraint: $\mathbf{nvar} > 1$.

3: nrec - long Input

On entry: the number of consecutive records, beginning at rec1, used in the analysis.

Constraint: $\mathbf{nrec} > 1$.

4: dblk - long Input

On entry: the total number of records in the data block.

Constraint: $dblk \ge rec1 + nrec$.

5: data[dblk * nvar] - double

On entry: the data values for the jth variable (for $j = 0, 1, ..., \mathbf{nvar} - 1$) are stored in $\mathbf{data}[i*\mathbf{nvar} + j]$, for $i = 0, 1, ..., \mathbf{dblk} - 1$.

6: yvar - long Input

On entry: the index of the dependent variable in the analysis. Indexes of variables used to predict values with a given tree lattice must be the same as those indexes used to compute the lattice.

Constraints: $0 \le yvar < nvar$.

7: bcat[nvar] - long Input

On entry: $\mathbf{bcat}[i]$ contains the base level value for the $\mathbf{ncat}[i]$ categories on the *i*th variable. If $\mathbf{ncat}[i] > 0$, for $i = 0, 1, ..., \mathbf{nvar} - 1$, the categorical values on the *i*th variable are given by $\mathbf{bcat}[i] + j$, for $j = 0, 1, ..., \mathbf{ncat}[i] - 1$; otherwise $\mathbf{bcat}[i]$ is not referenced. If the base level for each categorical variable is zero, \mathbf{bcat} can be 0.

8: iproot - long Input

On entry: the integer value of the root node of a decision tree as returned by nagdmc_gini_tree.

9: optrand - int

On entry: if the value of **optrand** is set equal to 1, a random number will be used to resolve dichotomies in the decision tree; otherwise **optrand** must be set equal to 0 and some data records may be unclassified, i.e., will be classified as -1.

Constraint: **optrand** $\in \{0,1\}$.

10: iseed - long Input

On entry: if optrand = 1, the initial values used to set the seed of the random number generator used to resolve any dichotomies in the tree; otherwise optrand is not referenced.

Input

11: res[nrec] - double

Output

On exit: $\mathbf{res}[i]$ contains the decision tree prediction for the $(\mathbf{rec1} + i)$ th data record, for $i = 0, 1, \dots, \mathbf{nrec} - 1$.

12: acc[nrec] - double

Output

On exit: acc[i] contains the probability of class membership, based on the training data, at the leaf node giving the *i*th prediction, for i = 0, 1, ..., nrec - 1.

13: info - int *

On exit: info gives information on the success of the function call:

- 0: the function successfully completed its task.
- -32: a path down the decision tree could not be found for at least one data record, consequently not all data records have been classified; this warning can be avoided by setting **optrand** equal to one.
 - i; i = 1, 2, 3, 4, 6, 9: the specification of the ith formal parameter was incorrect.
- 99: the function failed to allocate enough memory.
- > 100: an error occurred in a function specified by the user.

Notation

nrec the number of data records used to predict values, n.

data data records x_i , for $i = 1, 2, \ldots, n$.

res decision tree classifications y_i , for i = 1, 2, ..., n.

acc accuracy of classifications a_i , for i = 1, 2, ..., n.

Description

Let x_i , for $i=1,2,\ldots,n$ be a set of n data records not used to fit a decision tree, T. The ith predcition for the dependent variable in the data is found by using the outcome of a series of tests at the root node and internal nodes in T to associate x_i with leaf node l_i , for $i=1,2,\ldots,n$. The value of the dependent variable stored at l_i is then used as the predicted value y_i , for $i=1,2,\ldots,n$. In a decision tree calculated by using a Gini index criterion each leaf node stores the modal class of the dependent variable over a subset of the data records.

The outcome of each test depends on the type of variable used to partition data records at the node. Let a test at a node k be on variable j in the data and x_{ij} be the value of the ith data record on variable j.

If j is continuous, x_i is sent to the left child node of node k if $x_{ij} \leq t$, where t is the value of the continuous test as stored in node k; otherwise x_i is sent to the right child node of node k.

If j is categorical, x_i is sent to the node associated with the category value x_{ij} . However, when the decision was fitted there may not have been a category value x_{ij} at node k and, therefore, either the ith data record can be assigned an unclassified value or a child node can be chosen at random from those available to node k.

This process of evaluating tests continues until x_i reaches a leaf node, say l_i , in T.

A measure of the accuracy of the *i*th prediction can be obtained by considering the class distribution of data records at leaf node l_i , for $i=1,2,\ldots,n$. Suppose that r_i of m_i data records associated with l_i (and used to fit T) belong to the modal class, then a measure of the accuracy a_i of the classification is given by,

$$a_i = \frac{r_i}{m_i}, \quad i = 1, 2, \dots, n.$$

References and Further Reading

None.

See Also

 $gini_tree_ex.c$ the example calling program.