
NAG DMC nagdmc pca

Principal Component Analysis: nagdmc pca

Purpose

nagdmc pca computes a principal component analysis.

Declaration

#include <nagdmc.h>

void nagdmc pca(long rec1, long nvar, long nrec, long dblk, double data[],
void (*dfun)(long, long, double [], char *, int *), char *comm,
long chunksize, long iwts, int pcatype, double xbar[],
double s[], double loadings[], double results[], int *info);

Parameters

1: rec1 – long Input
On entry: the index in the data of the first data record used in the analysis.
Constraint: rec1 ≥ 0.

2: nvar – long Input
On entry: the number of variables in the data.
Constraint: nvar > 1.

3: nrec – long Input
On entry: the number of consecutive records, beginning at rec1, used in the analysis.
Constraint: nrec > 1.

4: dblk – long Input
On entry: the total number of records in the data block.
Constraint: dblk ≥ rec1 + nrec.

5: data[dblk ∗ nvar] – double Input
On entry: the data values for the jth variable (for j = 0, 1, . . . ,nvar−1) are stored in data[i∗nvar+j],
for i = 0, 1, . . . ,dblk− 1. When the data function is used, data is not referenced.

6: dfun – function supplied by user External Procedure
On entry: the pointer to a data function supplied by the user.
Constraint: if dfun is a valid pointer, data must be 0.
The specification of dfun is:

void dfun(long irec, long chunksize, double x[], char *comm, int *ierr)

1: irec – long Input
On entry: the index in the data of the first record returned.

2: chunksize – long Input
On entry: the number of consecutive records returned.

3: x[chunksize∗nvar] – double Output
On exit: data values for the jth variable (for j = 0, 1, . . . ,nvar− 1) must be returned
in x[i ∗ nvar + j], for i = 0, 1, . . . , chunksize− 1.

4: comm – char * Input
On entry: a communication parameter allowing additional information to be passed
to dfun. This parameter is passed ‘as is’ through the calling function.
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5: ierr – int * Output
On exit: if the value pointed to by ierr on return is greater than 100, the NAG DMC
function will terminate immediately and info will point to this value.

7: comm – char * Input
On entry: a communication parameter allowing additional information to be passed to dfun. This
parameter is passed ‘as is’ through the calling function.

8: chunksize – long Input
On entry: if the data function is used, the function inputs no more than chunksize data records at
a time; otherwise chunksize is not referenced.
Constraint: if dfun 6= 0, chunksize ≥ 1.

9: iwts – long Input
On entry: if iwts = −1, no weights are used; otherwise iwts is the index in data in which the
weights are stored.
Constraints: −1 ≤ iwts < nvar; iwts 6= yvar; and if nxvar > 0, iwts 6= xvar[i], for
i = 0, 1, . . . ,nxvar− 1.

10: pcatype – int Input
On entry: indicates the equivalent matrix for which the principal components are derived:
pcatype = 0 sum of squares and cross-products;
pcatype = 1 variance-covariance matrix;
pcatype = 2 correlation matrix;
pcatype = 3 user-supplied standardisation.
Constraint: pcatype ∈ {0, 1, 2, 3}.

11: xbar[nvar] – double Input
On entry: if variable means are available, they should be supplied in xbar; otherwise xbar should
be set to 0 and nagdmc pca will compute the means internally using an additional pass through
the data. Note that values corresponding to the column of weights, if any, will be ignored.

12: s[nvar] – double Input
On entry: the vector of standard deviations or scaling factors. If pcatype = 2 and standard
deviations are available, they should be supplied in s; otherwise nagdmc pca will compute the means
and standard deviations internally using an additional pass through the data. If pcatype = 3, s
must contain the user-supplied standardisations. If pcatype is zero or one, s is not referenced and
can be set to 0.
Constraints: if s is not 0 and is referenced, s[i] > 0.0, for i = 0, 1, . . . ,nvar− 1.

13: loadings[nvar∗nvar] – double Output
On exit: loadings[i ∗ nvar + j] is the jth loading from the principal component analysis for the ith
variable, for i = 0, 1, . . . ,nvar− 1; for j = 0, 1, . . . ,nvar− 1.

14: results[6∗nvar] – double Output
On exit: results[i ∗ 6 + j] is element j of the variance decomposition results for the ith variable,
where elements have the meaning:
Element 0: the eigenvalue.
Element 1: the proportion of variation explained by the component.
Element 2: the cumulative proportion of variation explained by the components.
Element 3: the χ2 statistic.
Element 4: the degrees of freedom.
Element 5: the significance.

15: info – int * Output
On exit: info gives information on the success of the function call:

0: the function successfully completed its task.
i; i = i = 1, 2, 3, 4, 6, 8, 9, 10, 12: the specification of the ith formal parameter was incorrect.
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51: all eigenvalues are zero; this indicates that a null matrix has been entered.
52: the sum of weights is less than 1.
98: the singular value decomposition used in the calculation failed to converge.
99: the function failed to allocate enough memory.

> 100: an error occurred in a function specified by the user.

Notation

nrec the number of records, n.
nvar the number of variables in the analysis, p.
data the data matrix, X.

Description

Let X be an n by p data matrix of n data records on p variables x1, x2, . . . , xp and let the p by p
variance-covariance matrix of x1, x2, . . . , xp be S. A vector a1 of length p is found such that

aT
1 Sa1 is maximised subject to aT

1 a1 = 1.

The variable z1 =
∑p

i=1 a1ixi is known as the first principal component and gives the linear
combination of the variables that gives the maximum variation. A second principal component,
z2 =

∑p
i=1 a2ixi, is found such that

aT
2 Sa2 is maximised subject to aT

2 a2 = 1 and aT
2 a1 = 0.

This gives the linear combination of variables that is orthogonal to the first principal component
that gives the maximum variation. Further principal components are derived in a similar way.

The vectors a1, a2, . . . , ap are the eigenvectors of the matrix S, and associated with each eigenvector
is the eigenvalue, λ2

i . The value of λ2
i /
∑

λ2
i gives the proportion of variation explained by the ith

principal component. Alternatively, the ai can be considered as the right singular vectors in a
singular value decomposition with singular values λi of the data matrix centred about its mean and
scaled by 1/

√
(n− 1), Xs. This latter approach is used in NAG DMC.

Xs = V ΛP ′,

where Λ is a diagonal matrix with elements λi, P ′ is the p by p matrix with columns ai, and V is
an n by p matrix with V ′V = I, which gives the principal component scores.

Principal component analysis is often used to reduce the dimension of a data set, replacing a large
number of correlated variables with a smaller number of orthogonal variables that still contain most
of the information in the original data set.

The choice of the number of dimensions required is usually based on the amount of variation
accounted for by the leading principal components. If k principal components are selected, then a
test of the equality of the remaining p− k eigenvalues is

(n− 1− (2p + 5)/6)

[
−

p∑
i=k+1

log(λ2
i ) + (p− k) log

(
p∑

i=k+1

λ2
i /(p− k)

)]
,

which has, asymptotically, a χ2 distribution with 1
2 (p−k−1)(p−k+2) degrees of freedom. Equality

of the remaining eigenvalues indicates that if any more principal components are to be considered
then they all should be considered.

Instead of the variance-covariance matrix the correlation matrix, the sums of squares and cross-
products matrix or a standardised sums of squares and cross-products matrix may be used. In
the last case S is replaced by σ−1/2Sσ−1/2 for a diagonal matrix σ with positive elements. If the
correlation matrix is used, the χ2 approximation for the statistic given above is not valid.

Weights can be used with the analysis, in which case the matrix X is first centred about the
weighted means then each row is scaled by an amount √wi, where wi is the weight for the ith data
record.
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See Also

nagdmc pca score computes PCA scores for a given number of component directions.
pca ex.c the example calling program.
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