Cluster Analysis: nagdmc_nrgp

Purpose

nagdmc_nrgp finds the nearest group to a data record given the group centroids.

Declaration

Parameters

1:	rec1 – long On entry: the index in the data of the first data record used in the analysis. Constraint: rec1 ≥ 0 .	Input
2:	nvar – long On entry: the number of variables in the data. Constraint: nvar ≥ 1 .	Input
3:	<pre>nrec - long On entry: the number of consecutive records, beginning at rec1, used in the analysis. Constraint: nrec > 1.</pre>	Input
4:	dblk - long On entry: the total number of records in the data block. Constraint: $dblk \ge rec1 + nrec$.	Input
5:	data[dblk * nvar] - double On entry: the data values for the <i>j</i> th variable (for $j = 0, 1,, nvar-1$) are stored in data[<i>i</i> *nvar for $i = 0, 1,, dblk - 1$. When the data function is used, data is not referenced.	$Input \\ \mathbf{ar} + j],$
6:	dfun – function supplied by user External Prod On entry: the pointer to a data function supplied by the user. Constraint: if dfun is a valid pointer, data must be 0. The specification of dfun is: void dfun(long irec, long chunksize, double x[], char *comm, int *ierr)	edure
	Volu drun(long free, long chunksize, double x[], char *comm, int *terf)	
	1: irec - long Input On entry: the index in the data of the first record returned. Input	
	2: chunksize – long Input On entry: the number of consecutive records returned.	
	3: $\mathbf{x}[\mathbf{chunksize*nvar}] - \mathbf{double}$ Output On exit: data values for the <i>j</i> th variable (for $j = 0, 1,, \mathbf{nvar} - 1$) must be returned in $\mathbf{x}[i * \mathbf{nvar} + j]$, for $i = 0, 1,, \mathbf{chunksize} - 1$.	
	4: comm – char * Input On entry: a communication parameter allowing additional information to be passed to dfun . This parameter is passed 'as is' through the calling function.	

nagdmc_nrgp

Output

On exit: if the value pointed to by **ierr** on return is greater than 100, the NAG DMC function will terminate immediately and **info** will point to this value.

7: $\operatorname{comm} - \operatorname{char} *$

ierr - int *

On entry: a communication parameter allowing additional information to be passed to **dfun**. This parameter is passed 'as is' through the calling function.

8: chunksize – long

On entry: if the data function is used, the function inputs no more than **chunksize** data records at a time; otherwise **chunksize** is not referenced.

Constraint: if **dfun** $\neq 0$, **chunksize** ≥ 1 .

9: **nxvar** - long

On entry: the number of variables in the analysis. If $\mathbf{nxvar} = 0$, all variables in the data are used in the analysis.

Constraint: $0 \leq \mathbf{nxvar} \leq \mathbf{nvar}$.

10: xvar[nxvar] - long

On entry: the indices indicating the position in **data** in which the variables are stored. If $\mathbf{nxvar} = 0$ then \mathbf{xvar} must be 0, and the indices of variables are given by $j = 0, 1, \dots, \mathbf{nvar} - 1$.

Constraints: if $\mathbf{nxvar} > 0$, $0 \le \mathbf{xvar}[i] < \mathbf{nvar}$, for $i = 0, 1, \dots, \mathbf{nxvar} - 1$; otherwise \mathbf{xvar} must be 0.

11: ng - long

On entry: the number of groups in the clustering. Constraint: ng > 1.

12: g[ng*nvar] - double

On entry: $\mathbf{g}[i * \mathbf{nvar} + j]$ contains the mean value for the *j*th variable of the *i*th group, for $j = 0, 1, \ldots, \mathbf{nvar} - 1$; for $i = 0, 1, \ldots, \mathbf{ng} - 1$. Note that the value corresponding to the weights, if any, will be ignored.

13: ing[nrec] - long

On exit: ing[i] is the nearest group to the *i*th data record in the analysis, for i = 0, 1, ..., nrec - 1.

On exit: info gives information on the success of the function call:

- 0: the function successfully completed its task.
- $i; i = 1, 2, 3, 4, 6, 8, 9, \dots, 11$: the specification of the *i*th formal parameter was incorrect.
- 99: the function failed to allocate enough memory.
- >100: an error occurred in a function specified by the user.

Notation

- **nrec** the number of data records, n.
- **data** the data set X.
- ${\bf nxvar}\,$ determines the number of variables in the analysis.
- **ng** the number of groups in the clustering.
- **g** the vectors of group centroids c_k , for k = 1, 2, ..., l.
- ing the allocation, $a_i 1$, of data records to groups, for i = 1, 2, ..., n.

Description

Let X be a set of n data records x_i on p variables, for i = 1, 2, ..., n, and c_k be a user-supplied vector of p elements that defines the centroid of group k. Given the centroids of a clustering containing l

Input

Input

Input

Input

Output

Output

Input

groups, the Euclidean distance, $d_{ik},\,{\rm from}$ the $i{\rm th}$ data record to the $k{\rm th}$ centroid is:

$$d_{ik} = \left[\sum_{k=1}^{l} (x_{ij} - c_{kj})^2\right]^{\frac{1}{2}}, \quad i = 1, 2, \dots, n,$$

where x_{ij} and c_{kj} are the values of the *i*th data record and *k*th centroid on variable *j*, respectively. The *i*th data record is allocated to the group number a_i with the minimum distance in d_{ik} , for k = 1, 2, ..., l.

References and Further Reading

None.

See Also

None.