
NAG DMC nagdmc mlp

Multi-layer Perceptron: nagdmc mlp

Purpose

nagdmc mlp computes a feed-forward multi-layer perceptron with a single hidden layer. The values
of free parameters are optimised by using conjugate gradients.

Declaration

#include <nagdmc.h>

void nagdmc mlp(long rec1, long nvar, long nrec, long dblk, double data[],
long nxvar, long xvar[], long yvar, long nhid, int phi,
int psi, double gain, long *nit, long nit2, long ninit,
long iseed, double model[], long val[], double vdata[],
double res[], double *objf, int *info);

Parameters

1: rec1 – long Input
On entry: the index in the data of the first data record used in the analysis.
Constraint: rec1 ≥ 0.

2: nvar – long Input
On entry: the number of variables in the data.
Constraint: nvar > 1.

3: nrec – long Input
On entry: the number of consecutive records, beginning at rec1, used in the analysis.
Constraint: nrec > 1.

4: dblk – long Input
On entry: the total number of records in the data block.
Constraint: dblk ≥ rec1 + nrec.

5: data[dblk ∗ nvar] – double Input
On entry: the data values for the jth variable (for j = 0, 1, . . . ,nvar−1) are stored in data[i∗nvar+j],
for i = 0, 1, . . . ,dblk− 1.

6: nxvar – long Input
On entry: the number of independent variables. If nxvar = 0 then all variables in the data,
excluding yvar, are treated as independent variables.
Constraint: 0 ≤ nxvar < nvar.

7: xvar[nxvar] – long Input
On entry: the indices indicating the position in data in which values of the independent variables
are stored. If nxvar = 0 then xvar must be 0, and the indices of independent variables are given by
j = 0, 1, . . . ,nvar− 1; j 6= yvar.
Constraints: if nxvar > 0, 0 ≤ xvar[i] < nvar, for i = 0, 1, . . . ,nxvar − 1; otherwise xvar must be
0.

8: yvar – long Input
On entry: the index in data in which values of the dependent variable are stored.
Constraints: 0 ≤ yvar < nvar; if nxvar > 0, yvar 6= xvar[i], for i = 0, 1, . . . ,nxvar− 1.

9: nhid – long Input
On entry: the number of functions in the hidden layer.
Constraint: nhid > 0.

nagdmc mlp.1



NAG DMC nagdmc mlp

10: phi – int Input

On entry: an integer that signifies the hidden layer activation function.

Constraint: phi must be one of either 1 (logistic) or 2 (hyperbolic tangent).

11: psi – int Input

On entry: an integer that signifies the output layer activation function.

Constraint: psi must be one of either 0 (linear), 1 (logistic) or 2 (hyperbolic tangent).

12: gain – double Input

On entry: the value of the multiplicative constant in the argument to logistic or hyperbolic tangent
functions.

Constraint: gain > 0.0.

13: nit – long * Input/Output

On entry: the maximum number of iterations of the conjugate gradients algorithm.
On exit: the number of completed iterations of the conjugate gradients algorithm.

Constraint: on entry the value pointed to by nit must be > 1.

14: nit2 – long Input

On entry: the number of iterations used to find a good starting point for the optimisation.

Constraint: nit2 ≥ 1.

15: ninit – long Input

On entry: the number of times to search for a good initial starting point for the optimisation.

Constraint: ninit ≥ 0.

16: iseed – long Input

On entry: the value of the random seed used to compute initial values of free parameters. If iseed
is less than zero, the random seed is taken from the system clock; otherwise the value of iseed is
used as the seed value.

17: model[9 + p+nhid∗(p+ 1)] – double Output

On exit: the optimised free parameter values for a model with p independent variables.

18: val[4] – long Input

On entry: the information used to validate the MLP model and halt the optimisation; if val is 0,
early stopping is not used; otherwise:

val[0] contains the number of data records used to validate the model;

val[1] contains the number of iterations of the optimising function to complete before beginning
validation;

val[2] contains the number of iterations between consecutive validations;

val[3] contains number of iterations past the current minimum of the objective function to continue
validating, thus trying to eliminate the possibility of the solution getting stuck in local minima.

Constraints: if referenced, val[0] ≥ 1; 1 < val[1] < t, where t is the value pointed to by nit on entry;
val[2] ≥ 0; and val[3] ≥ 0.

19: vdata[nvar∗q] – double Input

On entry: if val is not 0, vdata[i ∗ nvar + j] for j = 0, 1, . . . ,nvar− 1 is the ith data record used to
validate the model, for i = 0, 1, . . . , q − 1, where q = val[0]; otherwise vpara is not referenced.

20: res[nrec] – double Output

On exit: res[i] contains the MLP approximation to the value of the dependent variable in the data
for the ith training data record, for i = 0, 1, . . . ,nrec− 1.

21: objf – double * Output

On exit: the value of the sum of squares objective function at the end of the optimisation.

nagdmc mlp.2



NAG DMC nagdmc mlp

22: info – int * Output
On exit: info gives information on the success of the function call:

0: the function successfully completed its task.
i; i = 1, 2, 3, 4, 6, 7, . . . , 15, 18: the specification of the ith formal parameter was incorrect.

99: the function failed to allocate enough memory.

Notation

nrec the number of data records, n.
data stores the data records xi, for i = 1, 2, . . . , n.
nxvar determines the number of independent variables (equals the number of input units), d.
yvar the index in data giving the values for the dependent variable yi, for i = 1, 2, . . . , n.
nhid the number of hidden units in the model, m.
phi signifies the function choice for φ(·).
psi signifies the function choice for ψ(·)..
gain if required, the value of γ.
res the fitted values ŷi, for i = 1, 2, . . . , n.

Description

A fully connected, feed-forward multi-layer perceptron (MLP) has d input units, m units in its
hidden layer and a single output unit. Given the ith training data record xi with scalar elements
xij , for i = 1, 2, . . . , d, the output ŷi for the value yi of the dependent variable in X is given by,

ŷi = ψ

 m∑
k=1

wkφ

 d∑
j=1

wjkxij − θ

− η

 ,

{
wjk, wk, θk, η ∈ IR,
φ(·), ψ(·) : IR → IR, ,

where:

(a) wjk denotes the weight value that connects the ith unit in the input layer to the kth unit
in the hidden layer, for j = 1, 2, . . . , d; for k = 1, 2, . . . ,m.

(b) θ is the threshold value subtracted at the hidden layer.
(c) wk denotes the weight value that connects the kth unit in the hidden layer to the single

unit in the output layer, for k = 1, 2, . . . ,m.
(d) η is the threshold value subtracted at the single unit in the output layer.
(e) φ(·) is the activation function applied at the hidden layer and may be any one of the

following functions:

logistic: φ(z) =
1

1 + e−γz
, γ, z ∈ IR,

hyperbolic tangent: φ(z) = tanh(γz), γ, z ∈ IR,

where the value of γ is supplied by the user.
(f) ψ(·) is the activation function applied at the output layer and may be any one of the

following functions:

linear: ψ(z) = z, z ∈ IR,

logistic: ψ(z) =
1

1 + e−γz
, γ, z ∈ IR,

hyperbolic tangent: ψ(z) = tanh(γz), γ, z ∈ IR.

where, again, the value of γ for the logistic function is supplied by the user.

Values for the free parameters in the multi-layer perceptron model are optimised by using a pre-
conditioned, limited memory quasi-Newton conjugate gradients method to minimise the objective
(sum of squares) function:

1
2n

n∑
i=1

(yi − ŷi)
2
.

nagdmc mlp.3



NAG DMC nagdmc mlp

In order to improve the accuracy of MLP approximations to new data records, usually it is desriable
to halt the optimisation before the value of the sum of squares error function, as measured on the
training data records, reaches a global minimum. This method of improving the accuracy of MLPs
on new data is known as early stopping, and can be performed by using a validation set of data
records. In particular, the optimisation is halted when the sum of squares error function is minimised
over a validation set of data records which are not (directly) used to determine values for the free
parameters in the model.

References and Further Reading

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press London.

Haykin S (1994) Neural Networks MacMillan.

See Also

nagdmc predict mlp computes a predictions given a trained MLP model.
mlp ex.c the example calling program.

nagdmc mlp.4


	Purpose
	Declaration
	Parameters
	Notation
	Description
	References and Further Reading
	See Also

