Multi-layer Perceptron: nagdmc_mlp

Purpose

nagdmc_mlp computes a feed-forward multi-layer perceptron with a single hidden layer. The values of free parameters are optimised by using conjugate gradients.

Declaration

Parameters

1:	rec1 – long On entry: the index in the data of the first data record used in the analysis.	Input
	Constraint: $\mathbf{rec1} \ge 0$.	
2:	nvar - long	Input
	On entry: the number of variables in the data.	
	Constraint: $\mathbf{nvar} > 1$.	
3:	nrec - long	Input
	On entry: the number of consecutive records, beginning at rec1, used in the analysis. Constraint: $nrec > 1$.	
4:	dblk - long	Input
	On entry: the total number of records in the data block.	1
	Constraint: $\mathbf{dblk} \geq \mathbf{rec1} + \mathbf{nrec}$.	
5:	data[dblk * nvar] - double	Input
	On entry: the data values for the <i>j</i> th variable (for $j = 0, 1,, \mathbf{nvar}-1$) are stored in data [<i>i</i> * n for $i = 0, 1,, \mathbf{dblk} - 1$.	$\mathbf{var}+j],$
6:	nxvar - long	Input
	On entry: the number of independent variables. If $\mathbf{nxvar} = 0$ then all variables in the excluding \mathbf{yvar} , are treated as independent variables.	ne data,
	Constraint: $0 \leq \mathbf{nxvar} < \mathbf{nvar}$.	
7:	xvar[nxvar] - long	Input
	On entry: the indices indicating the position in data in which values of the independent ware stored. If $\mathbf{nxvar} = 0$ then \mathbf{xvar} must be 0, and the indices of independent variables are given $j = 0, 1, \ldots, \mathbf{nvar} - 1; j \neq \mathbf{yvar}$.	variables given by
	Constraints: if $\mathbf{nxvar} > 0$, $0 \le \mathbf{xvar}[i] < \mathbf{nvar}$, for $i = 0, 1, \dots, \mathbf{nxvar} - 1$; otherwise $\mathbf{xvar} = 0$.	must be
8:	$\mathbf{yvar} - \texttt{long}$	Input
	On entry: the index in data in which values of the dependent variable are stored.	
	Constraints: $0 \leq \mathbf{yvar} < \mathbf{nvar}$; if $\mathbf{nxvar} > 0$, $\mathbf{yvar} \neq \mathbf{xvar}[i]$, for $i = 0, 1, \dots, \mathbf{nxvar} - 1$.	
9:	$\mathbf{nhid} - \mathtt{long}$	Input

On entry: the number of functions in the hidden layer. Constraint: nhid > 0.

10:	phi - int Input
	On entry: an integer that signifies the hidden layer activation function.
	Constraint: phi must be one of either 1 (logistic) or 2 (hyperbolic tangent).
11:	psi – int Input
	On entry: an integer that signifies the output layer activation function.
	Constraint: psi must be one of either 0 (linear), 1 (logistic) or 2 (hyperbolic tangent).
12:	gain - double Input
	On entry: the value of the multiplicative constant in the argument to logistic or hyperbolic tangent functions.
	Constraint: $gain > 0.0$.
13:	nit - long * Input/Output
	On entry: the maximum number of iterations of the conjugate gradients algorithm. On exit: the number of completed iterations of the conjugate gradients algorithm.
	Constraint: on entry the value pointed to by nit must be > 1 .
14:	nit2 – long Input
	On entry: the number of iterations used to find a good starting point for the optimisation. Constraint: $nit 2 \ge 1$.
15:	ninit – long
	On entry: the number of times to search for a good initial starting point for the optimisation. Constraint: ninit > 0 .
16.	- Input
10.	On entry: the value of the random seed used to compute initial values of free parameters. If iseed is less than zero, the random seed is taken from the system clock; otherwise the value of iseed is used as the seed value.
17:	model[9 + p + nhid*(p + 1)] - double Output
	On exit: the optimised free parameter values for a model with p independent variables.
18:	val[4] - long
10.	On entry: the information used to validate the MLP model and halt the optimisation; if val is 0, early stopping is not used; otherwise:
	val [0] contains the number of data records used to validate the model;
	val [1] contains the number of iterations of the optimising function to complete before beginning validation;
	val[2] contains the number of iterations between consecutive validations;
	val [3] contains number of iterations past the current minimum of the objective function to continue validating, thus trying to eliminate the possibility of the solution getting stuck in local minima.
	Constraints: if referenced $\mathbf{vn}[0] > 1: 1 < \mathbf{vn}[1] < t$ where t is the value pointed to by nit on entry:

Constraints: if referenced, $val[0] \ge 1$; 1 < val[1] < t, where t is the value pointed to by nit on entry; $val[2] \ge 0$; and $val[3] \ge 0$.

19: vdata[nvar*q] - double

On entry: if val is not 0, vdata[i * nvar + j] for j = 0, 1, ..., nvar - 1 is the *i*th data record used to validate the model, for i = 0, 1, ..., q - 1, where q = val[0]; otherwise vpara is not referenced.

20: res[nrec] - double

On exit: res[i] contains the MLP approximation to the value of the dependent variable in the data for the *i*th training data record, for i = 0, 1, ..., nrec - 1.

21: **objf** - double *

On exit: the value of the sum of squares objective function at the end of the optimisation.

Output

Output

Input

nagdmc_mlp

Output

22: info - int *

On exit: info gives information on the success of the function call:

- 0: the function successfully completed its task.
- $i; i = 1, 2, 3, 4, 6, 7, \dots, 15, 18$: the specification of the *i*th formal parameter was incorrect.
- 99: the function failed to allocate enough memory.

Notation

nrec	the number of data records, n .
data	stores the data records x_i , for $i = 1, 2,, n$.
nxvar	determines the number of independent variables (equals the number of input units), d .
yvar	the index in data giving the values for the dependent variable y_i , for $i = 1, 2,, n$.
nhid	the number of hidden units in the model, m .
phi	signifies the function choice for $\phi(\cdot)$.
psi	signifies the function choice for $\psi(\cdot)$.
gain	if required, the value of γ .
res	the fitted values \hat{y}_i , for $i = 1, 2, \dots, n$.

Description

A fully connected, feed-forward multi-layer perceptron (MLP) has d input units, m units in its hidden layer and a single output unit. Given the *i*th training data record x_i with scalar elements x_{ii} , for i = 1, 2, ..., d, the output \hat{y}_i for the value y_i of the dependent variable in X is given by,

$$\hat{y}_i = \psi \left(\sum_{k=1}^m w_k \phi \left(\sum_{j=1}^d w_{jk} x_{ij} - \theta \right) - \eta \right), \quad \begin{cases} w_{jk}, w_k, \theta_k, \eta \in \mathbb{R}, \\ \phi(\cdot), \psi(\cdot) : \ \mathbb{R} \to \mathbb{R}, \end{cases},$$

where:

- (a) w_{jk} denotes the weight value that connects the *i*th unit in the input layer to the *k*th unit in the hidden layer, for j = 1, 2, ..., d; for k = 1, 2, ..., m.
- (b) θ is the threshold value subtracted at the hidden layer.
- (c) w_k denotes the weight value that connects the kth unit in the hidden layer to the single unit in the output layer, for k = 1, 2, ..., m.
- (d) η is the threshold value subtracted at the single unit in the output layer.
- (e) $\phi(\cdot)$ is the activation function applied at the hidden layer and may be any one of the following functions:

logistic:	$\phi(z)$	=	$\frac{1}{1}$,	$\gamma, z \in \mathbb{R},$
hyperbolic tangent:	$\phi(z)$	=	$1 + e^{-\gamma z}$ $\tanh(\gamma z),$	$\gamma, z \in \mathbb{R}$

where the value of γ is supplied by the user.

(f) $\psi(\cdot)$ is the activation function applied at the output layer and may be any one of the following functions:

linear:	$\psi(z)$	=	z,	$z \in {\rm I\!R},$
logistic:	$\psi(z)$	=	$\frac{1}{1+e^{-\gamma z}},$	$\gamma,z\in{\rm I\!R}$
hyperbolic tangent:	$\psi(z)$	=	$\tanh(\gamma z),$	$\gamma, z \in \mathbb{R}$

where, again, the value of γ for the logistic function is supplied by the user.

Values for the free parameters in the multi-layer perceptron model are optimised by using a preconditioned, limited memory quasi-Newton conjugate gradients method to minimise the objective (sum of squares) function:

$$\frac{1}{2n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2.$$

In order to improve the accuracy of MLP approximations to new data records, usually it is desriable to halt the optimisation before the value of the sum of squares error function, as measured on the training data records, reaches a global minimum. This method of improving the accuracy of MLPs on new data is known as early stopping, and can be performed by using a validation set of data records. In particular, the optimisation is halted when the sum of squares error function is minimised over a validation set of data records which are not (directly) used to determine values for the free parameters in the model.

References and Further Reading

Gill P E, Murray W and Wright M H (1981) *Practical Optimization* Academic Press London.

Haykin S (1994) $Neural\ Networks$ MacMillan.

See Also

nagdmc_predict_mlpcomputes a predictions given a trained MLP model.mlp_ex.cthe example calling program.