Loglinear Regression: nagdmc_loglinear

Purpose

 $nagdmc_loglinear$ computes a loglinear regression model with p parameters and is a simplified interface to $nagdmc_poisson_reg$ using a log link function.

Declaration

Parameters

1:	rec1 – long On entry: the index in the data of the first data record used in the analysis. Constraint: rec1 ≥ 0 .	[nput
2:	nvar - longOn entry: the number of variables in the data.Constraint: $nvar > 1$.	Input
3:	nrec – long On entry: the number of consecutive records, beginning at rec1 , used in the analysis. Constraint: nrec > 1.	Input
4:	$dblk - long$ On entry: the total number of records in the data block.Constraint: $dblk \ge rec1 + nrec.$	Input
5:	data[dblk * nvar] - double On entry: the data values for the <i>j</i> th variable (for $j = 0, 1,, nvar-1$) are stored in $data[i*nvar]$ for $i = 0, 1,, dblk - 1$.	[nput] $\mathbf{r}+j],$
6:	nxvar – long On entry: the number of independent variables. If nxvar = 0 then all variables in the excluding yvar , are treated as independent variables. Constraint: $0 \leq \mathbf{nxvar} < \mathbf{nvar}$.	<i>Input</i> data,
7:	$xvar[nxvar] - long$ InputOn entry: the indices indicating the position in data in which values of the independent variables are stored. If $nxvar = 0$ then $xvar$ must be 0, and the indices of independent variables are given by $j = 0, 1, \ldots, nvar - 1; j \neq yvar.$ Constraints: if $nxvar > 0, 0 \leq xvar[i] < nvar$, for $i = 0, 1, \ldots, nxvar - 1$; otherwise $xvar$ must be 0.	
8:	yvar – long On entry: the index in data in which values of the dependent variable are stored. Constraints: $0 \leq$ yvar $<$ nvar; if nxvar > 0 , yvar \neq xvar $[i]$, for $i = 0, 1,,$ nxvar -1 .	Input
9:	dev – double O On exit: the deviance from the fitted model.	utput
10:	$ \frac{df - \log *}{On \ exit: \ the \ degrees \ of \ freedom \ for \ the \ deviance. } O $	utput

Output

Output

Output

Output

Output

11: $\mathbf{b}[p] - \mathtt{double}$

On exit: the parameter estimates. $\mathbf{b}[0]$ is the mean parameter. $\mathbf{b}[i]$ is the coefficient of the *i*th variable included in the model, for i = 1, 2, ..., p - 1. If $\mathbf{nxvar} > 0$ then the order the independent variables are added to the model is defined by \mathbf{xvar} , otherwise the order is defined by indices in the data.

12: se[p] - double

On exit: the standard errors of the parameters in **b**.

13: $\operatorname{cov}[p*(p+1)/2] - \operatorname{double}$

On exit: the first p * (p + 1)/2 elements of **cov** contain the upper triangular part of the variancecovariance matrix of the p parameters in **b**. They are stored packed by column, i.e., the covariance between the parameter estimate given in $\mathbf{b}[i]$ and the parameter estimate given in $\mathbf{b}[j]$, $j \ge i$, is stored in $\mathbf{cov}[j(j+1)/2+i]$, for i = 0, 1, ..., p-1 and j = i, i+1, ..., p-1.

14: model[(3 * p * (p + 1))/2 + nvar + 14] - double

On exit: if not 0, information on the fitted model for use in the functions described in 'See Also'.

15: info - int *

On exit: info gives information on the success of the function call:

- -4: a model value has reached a boundary.
- 0: the function successfully completed its task.
- $i; i = 1, 2, \dots, 4, 6, 7, 8$: the specification of the *i*th formal parameter was incorrect.
- 42: invalid value for response variable.
- 45: model has not converged.
- 57: there are no degrees of freedom for the error estimates.
- 58: the fit is exact, no error estimates.
- 59: more variables than observations.
- 98: there is an underlying computational problem (this is an unlikely error exit).
- 99: the function failed to allocate enough memory.

Notation

nrec	the number of observations, n .
nxvar	the number of independent variables, $p-1$.
xvar	the independent variables, X , excluding the mean.
yvar	the dependent variable, y .
b	the parameter estimates, $\hat{\beta}$.

Description

See the description for **nagdmc_poisson_reg**.

References and Further Reading

Cook R D and Weisberg S (1982) Residuals and Influence in Regression Chapman and Hall. McCullagh P and Nelder J A (1983) Generalized Linear Models Chapman and Hall. Plackett R L (1974) The Analysis of Categorical Data Griffin.

See Also

$\mathbf{nagdmc_extr_reg}$	computes fitted values, residuals and leverages for a regression.
nagdmc_poisson_reg	generalized linear model with Poisson errors.
nagdmc_predict_reg	computes predictions given a fitted regression model.
$loglinear_reg_ex.c$	the example calling program.