Logistic Regression: nagdmc_logit_reg

Purpose

 $\mathbf{nagdmc_logit_reg}$ computes a logistic regression model with p parameters and is a simplified interface to $\mathbf{nagdmc_binomial_reg}$ using a logit link function.

Declaration

Parameters

1: rec1 - long Input

On entry: the index in the data of the first data record used in the analysis.

Constraint: $rec1 \ge 0$.

2: nvar - long Input

On entry: the number of variables in the data.

Constraint: $\mathbf{nvar} > 1$.

 $3: \quad \mathbf{nrec} - \mathbf{long}$ Input

On entry: the number of consecutive records, beginning at rec1, used in the analysis.

Constraint: $\mathbf{nrec} > 1$.

4: dblk - long Input

On entry: the total number of records in the data block.

Constraint: $dblk \ge rec1 + nrec$.

 $5: \quad \mathbf{data}[\mathbf{dblk} * \mathbf{nvar}] - \mathtt{double}$

Input

On entry: the data values for the jth variable (for $j = 0, 1, ..., \mathbf{nvar} - 1$) are stored in $\mathbf{data}[i*\mathbf{nvar} + j]$, for $i = 0, 1, ..., \mathbf{dblk} - 1$.

6: nxvar - long Input

On entry: the number of independent variables. If $\mathbf{nxvar} = 0$ then all variables in the data, excluding \mathbf{yvar} and (if ≥ 0) \mathbf{bdvar} , are treated as independent variables.

Constraint: $0 \le \mathbf{nxvar} < \mathbf{nvar}$.

7: $\mathbf{xvar}[\mathbf{nxvar}] - \mathbf{long}$

Input

On entry: the indices indicating the position in **data** in which values of the independent variables are stored. If $\mathbf{nxvar} = 0$ then \mathbf{xvar} must be 0, and the indices of independent variables are given by $j = 0, 1, \ldots, \mathbf{nvar} - 1$; $j \neq \mathbf{yvar}$ and $j \neq \mathbf{bdvar}$.

Constraints: if $\mathbf{nxvar} > 0$, $0 \le \mathbf{xvar}[i] < \mathbf{nvar}$, for $i = 0, 1, \dots, \mathbf{nxvar} - 1$; otherwise \mathbf{xvar} must be

8: yvar - long Input

On entry: the index in data in which values of the dependent variable are stored.

Constraints: $0 \le yvar < nvar$; if nxvar > 0, $yvar \ne xvar[i]$, for i = 0, 1, ..., nxvar - 1.

9: ycut - long Input

On entry: if $\mathbf{ycut} \neq 0$, the y-variable is transformed so that values $< \mathbf{ycut}$ are set to zero and values $\ge \mathbf{ycut}$ are set to one.

10: bdvar - long Input

On entry: an index indicating the position in **data** in which the binomial denominator is stored. If $\mathbf{bdvar} = -1$ a default value of one is used for all observations.

Constraint: $-1 \le \mathbf{bdvar} < \mathbf{nvar}$.

11: \mathbf{dev} - \mathbf{double}

On exit: the deviance from the fitted model.

12: $\mathbf{df} - \mathbf{long} *$

On exit: the degrees of freedom for the deviance.

13: $\mathbf{b}[p]$ - double

On exit: the parameter estimates. $\mathbf{b}[0]$ is the mean parameter. $\mathbf{b}[i]$ is the coefficient of the *i*th variable included in the model, for i = 1, 2, ..., p - 1. If $\mathbf{nxvar} > 0$ then the order the independent variables are added to the model is defined by \mathbf{xvar} , otherwise the order is defined by indices in the data.

14: se[p] - double

On exit: the standard errors of the parameters in b.

15: $\mathbf{cov}[p*(p+1)/2] - \mathbf{double}$

On exit: the first p*(p+1)/2 elements of **cov** contain the upper triangular part of the variance-covariance matrix of the p parameters in **b**. They are stored packed by column, i.e., the covariance between the parameter estimate given in $\mathbf{b}[i]$ and the parameter estimate given in $\mathbf{b}[j]$, $j \geq i$, is stored in $\mathbf{cov}[j(j+1)/2+i]$, for $i=0,1,\ldots,p-1$ and $j=i,i+1,\ldots,p-1$.

16: $\mathbf{model}[(3*p*(p+1))/2 + \mathbf{nvar} + 14] - \mathtt{double}$ Output

On exit: if not 0, information on the fitted model for use in the functions described in 'See Also'.

17: info - int *

On exit: **info** gives information on the success of the function call:

- -4: a model value has reached a boundary.
 - 0: the function successfully completed its task.
 - $i; i = 1, 2, \dots, 4, 7, 8, 10$: the specification of the *i*th formal parameter was incorrect.
- 42: invalid value for response variable.
- 43: invalid value for binomial denominator.
- 45: model has not converged.
- 57: there are no degrees of freedom for the error estimates.
- 58: the fit is exact, no error estimates.
- 59: more variables than observations.
- 98: there is an underlying computational problem (this is an unlikely error exit).
- 99: the function failed to allocate enough memory.

Notation

nrec the number of observations, n.

nxvar the number of independent variables, p-1.

xvar the independent variables, X, excluding the mean.

yvar the dependent variable, y.

bdvar if **bdvar** ≥ 0 , **bdvar** is the index in the data that defines the binomial denominator, t.

b the parameter estimates, β .

Description

See the description for **nagdmc_binomial_reg**.

References and Further Reading

Cook R D and Weisberg S (1982) Residuals and Influence in Regression Chapman and Hall.

Cox D R (1983) Analysis of Binary Data Chapman and Hall.

McCullagh P and Nelder J A (1983) Generalized Linear Models Chapman and Hall.

See Also

nagdmc_binomial_reg nagdmc_extr_reg nagdmc_predict_reg nagdmc_probit_reg

generalized linear model with binomial errors. computes fitted values, residuals and leverages for a regression.

computes predictions given a fitted regression model.

simplified version of nagdmc_binomial_reg using a probit link

and a restricted set of parameters.

 $logit_reg_ex.c$ the example calling program.