Binomial Regression: nagdmc_binomial_reg

Purpose

 $nagdmc_binomial_reg$ computes a regression model with p parameters, binomial errors and either a logit, probit or complimentary log-log link function.

Declaration

Parameters

1:	rec1 – long On entry: the index in the data of the first data record used in the analysis. Constraint: rec1 ≥ 0 .	Input	
2:	nvar – long On entry: the number of variables in the data. Constraint: $nvar > 1$.	Input	
3:	nrec – long On entry: the number of consecutive records, beginning at rec1 , used in the analysis. Constraint: nrec > 1.	Input	
4:	dblk – long On entry: the total number of records in the data block. Constraint: dblk \geq rec1 + nrec .	Input	
5:	$\begin{aligned} & \textbf{data[dblk * nvar]} - \textbf{double} & Input \\ & On \ entry: \ the \ data \ values \ for \ the \ j th \ variable \ (for \ j = 0, 1, \dots, nvar-1) \ are \ stored \ in \ \textbf{data[i*nvar+j]}, \\ & for \ i = 0, 1, \dots, \textbf{dblk} - 1. \end{aligned}$		
6:	fun – function supplied by user External P in entry: the pointer to a data function supplied by the user. External P ionstraint: if dfun is a valid pointer, data must be 0. Image: Constraint of dfun is: roid dfun(long irec, long chunksize, double x[], char *comm, int *ierr)		
	1: irec – long Input On entry: the index in the data of the first record returned.		
	2: chunksize – long Input On entry: the number of consecutive records returned.		
	3: $\mathbf{x}[\mathbf{chunksize*nvar}] - \mathbf{double}$ Output On exit: data values for the <i>j</i> th variable (for $j = 0, 1,, \mathbf{nvar} - 1$) must be returned in $\mathbf{x}[i*\mathbf{nvar} + j]$, for $i = 0, 1,, \mathbf{chunksize} - 1$.		

4:

5:

comm - char * Input On entry: a communication parameter allowing additional information to be passed to **dfun**. This parameter is passed 'as is' through the calling function.

ierr - int * On exit: if the value pointed to by ierr on return is greater than 100, the NAG DMC function will terminate immediately and **info** will point to this value.

7: comm - char *

On entry: a communication parameter allowing additional information to be passed to dfun. This parameter is passed 'as is' through the calling function.

chunksize - long 8:

On entry: if the data function is used, the function inputs no more than chunksize data records at a time; otherwise **chunksize** is not referenced.

Constraint: if dfun $\neq 0$, chunksize ≥ 1 .

9: nxvar - long

On entry: the number of independent variables. If $\mathbf{nxvar} = 0$ then all variables in the data, excluding **yvar** and (if defined in the data) **bdvar**, **iwts** and **ioff**, are treated as independent variables. Constraint: 0 < nxvar < nvar.

xvar[nxvar] - long 10:

On entry: the indices indicating the position in **data** in which values of the independent variables are stored. If $\mathbf{nxvar} = 0$ then \mathbf{xvar} must be 0, and the indices of independent variables are given by $j = 0, 1, \dots,$ **nvar** -1; $j \neq$ **yvar** and $j \neq$ **bdvar**, **iwts** or **ioff**.

Constraints: if $\mathbf{nxvar} > 0$, $0 \leq \mathbf{xvar}[i] < \mathbf{nvar}$, for $i = 0, 1, \dots, \mathbf{nxvar} - 1$; otherwise \mathbf{xvar} must be 0.

11: yvar - long

On entry: the index in data in which values of the dependent variable are stored.

Constraints: $0 \leq yvar < nvar$; if nxvar > 0, $yvar \neq xvar[i]$, for i = 0, 1, ..., nxvar - 1.

12:ycut - long

On entry: if ycut $\neq 0$, the y-variable is transformed so that values < ycut are set to zero and values \geq ycut are set to one.

13:bdvar - long

On entry: an index indicating the position in **data** in which the binomial denominator is stored. If $\mathbf{bdvar} = -1$ a default value of one is used for all observations.

Constraint: $-1 \leq \mathbf{bdvar} < \mathbf{nvar}$.

14:iwts - long

On entry: if iwts = -1, no weights are used; otherwise iwts is the index in data in which the weights are stored.

Constraints: $-1 \leq iwts < nvar$; $iwts \neq yvar$; and if nxvar > 0, $iwts \neq xvar[i]$, for $i = 0, 1, \dots,$ **nxvar** -1.

ioff - long 15:

On entry: the index in data in which the offset values are stored. If ioff = -1, no offsets are used. Constraint: ioff < nvar.

16:link - char

On entry: indicates which link function to use. Values of link can be upper or lower case.

- 'G' : Logit link function.
- 'P' : Probit link function.

'C' : Complimentary log-log link function.

Constraint: link = 'G', 'g', 'P', 'p', 'C' or 'c'.

Input

Input

Input

Output

Input

Input

Input

Input

Input

Input

Input

NAG	<i>F DMC</i> nagdmc_binomial_r	∋g
17:	dev – double Outp On exit: the deviance from the fitted model.	ut
18:	df - long * Outp	ut
	On exit: the degrees of freedom for the deviance.	
19:	$\mathbf{b}[p]$ - double Output On exit: the parameter estimates. $\mathbf{b}[0]$ is the mean parameter. $\mathbf{b}[i]$ is the coefficient of the variable included in the model, for $i = 1, 2,, p - 1$. If $\mathbf{nxvar} > 0$ then the order the independent variables are added to the model is defined by \mathbf{xvar} , otherwise the order is defined by indices in the data.	$_{ m ent}$
20:	$\mathbf{se}[p] - \mathtt{double}$ $Outp$	ut
	On exit: the standard errors of the parameters in \mathbf{b} .	
21:	$\operatorname{cov}[p*(p+1)/2]$ - double $Outp$	
	On exit: the first $p * (p + 1)/2$ elements of cov contain the upper triangular part of the varian covariance matrix of the p parameters in b . They are stored packed by column, i.e., the covarian between the parameter estimate given in $\mathbf{b}[i]$ and the parameter estimate given in $\mathbf{b}[j]$, $j \ge i$, stored in $\mathbf{cov}[j(j+1)/2+i]$, for $i = 0, 1, \ldots, p-1$ and $j = i, i+1, \ldots, p-1$.	ice
22:	model[(3 * p * (p + 1))/2 + nvar + 14] - double Output	ut
	On exit: if not 0, information on the fitted model for use in the functions described in 'See Also	·.
23:	scale - double Inp	ut
	On entry: the scale parameter used to scale the standard errors of the parameter estimates. $scale = 0.0$, a default value of 1.0 is used.	If
	Constraint: scale ≥ 0.0 .	
24:	tol - double	ut
	On entry: the convergence tolerance for the training. If tol is equal to 0.0, a default value of 0.000 is used. Constraint: tol \geq 0.0.	01
25:		<i>t</i>
20:	eps – double Inp On entry: the value of the criterion used for model pruning. If $eps = 0.0$, a default value of $1e^{-1}$ is used. Constraint: $eps \ge 0.0$.	
26:	maxit - long Int	nt
	On entry: the maximum number of iterations (passes through the data) to be used in training. $maxit = 0$, a default value of 10 is used.	
	Constraint: $\max t \ge 0$.	
27:	info - int * Outp	ut
	On exit: info gives information on the success of the function call:	
	-4: a model value has reached a boundary.	
	0: the function successfully completed its task.	
	$i; i = 1, 2, \dots, 6, 8, 9, \dots, 16, 23, 24, 25, 26$: the specification of the <i>i</i> th formal parameter w incorrect.	as
	41: invalid value for a weight.	
	42: invalid value for response variable.	
	43: invalid value for binomial denominator.	
	45: model has not converged.	

57: there are no degrees of freedom for the error estimates.

- 58: the fit is exact, no error estimates.
- 59: more variables than observations.
- 98: there is an underlying computational problem (this is an unlikely error exit).
- 99: the function failed to allocate enough memory.
- >100: an error occurred in a function specified by the user.

Notation

nrec	the number of observations, n .
nxvar	the number of independent variables, $p-1$.
xvar	the independent variables, X , excluding the mean.
yvar	the dependent variable, y .
bdvar	if $\mathbf{bdvar} \ge 0$, \mathbf{bdvar} is the index in the data that defines the binomial denominator, t.
iwts	if $iwts \ge 0$, $iwts$ is the index in the data that defines the weights, W.
ioff	if $ioff \ge 0$, $ioff$ is the index in the data that defines the offset, o.
link	character flag indicating which link function $g(.)$ to use.
b	the parameter estimates, $\hat{\beta}$.

Description

nagdmc_binomial_reg fits a generalized linear model with binomial errors. The model consists of the following elements.

(a) A set of n observations, y_i , from a binomial distribution

$$\binom{t}{y}\pi^y(1-\pi)^{t-y}.$$

- (b) X, an n by p matrix of independent variables, In most linear regression models the first term is taken as a mean term or an intercept, i.e., $X_{i,1} = 1$, for i = 1, 2, ..., n; this is assumed in NAG DMC.
- (c) A linear model:

$$\eta = \sum \beta_j x_j.$$

(d) A link function $\eta = g(\mu)$, linking the linear predictor, η , and the mean of the distribution, $\mu = \pi t$. The possible link functions are

(i) logistic link:
$$\eta = \log\left(\frac{\mu}{t-\mu}\right)$$
,
(ii) probit link: $\eta = \Phi^{-1}\left(\frac{\mu}{t}\right)$,

(iii) complementary log-log link:
$$\eta = \log\left(-\log\left(1 - \frac{\mu}{t}\right)\right)$$
.

(e) A measure of fit, the deviance:

$$\sum_{i=1}^n \operatorname{dev}(y_i, \hat{\mu}_i) = \sum_{i=1}^n 2 \Bigg[y_i \log \Bigg(\frac{y_i}{\hat{\mu}_i} \Bigg) + (t_i - y_i) \log \Bigg(\frac{(t_i - y_i)}{(t_i - \hat{\mu}_i)} \Bigg) \Bigg].$$

The linear parameters are estimated by iterative weighted least squares. An adjusted dependent variable, z, is formed,

$$z = \eta + (y - \mu)\frac{d\eta}{d\mu},$$

and a working weight, w,

$$w = \left(\tau \frac{d\eta}{d\mu}\right)^2$$
 where $\tau = \sqrt{\frac{t}{\mu(t-\mu)}}$.

At each iteration an approximation to the estimate of β , $\hat{\beta}$, is found by the weighted least squares regression of z on X with weights w.

NAG DMC uses a QR decomposition of $w^{\frac{1}{2}}X$, i.e.,

$$w^{\frac{1}{2}}X = QR,$$

where R is a p by p triangular matrix and Q is an n by p column orthogonal matrix. If R is of full rank then $\hat{\beta}$ is the solution to

$$R\hat{\beta} = Q^T w^{\frac{1}{2}} z.$$

If R is not of full rank a solution is obtained by means of a singular value decomposition (SVD) of R.

$$R = Q_* \begin{pmatrix} D & 0\\ 0 & 0 \end{pmatrix} P^T,$$

where D is a k by k diagonal matrix with non-zero diagonal elements, k being the rank of R and $w^{\frac{1}{2}}X$. This gives the solution

$$\hat{\beta} = P_1 D^{-1} \begin{pmatrix} Q_* & 0 \\ 0 & I \end{pmatrix} Q^T w^{\frac{1}{2}} z,$$

 P_1 being the first k columns of P, i.e., $P = (P_1P_0)$.

The iterations are continued until there is only a small change in the deviance.

The initial values for the algorithm are obtained by taking

$$\hat{\eta} = g(y).$$

The fit of the model can be assessed by examining and testing the deviance, in particular, by comparing the difference in deviance between nested models, i.e., when one model is a sub-model of the other. The difference in deviance between two nested models has, asymptotically, a χ^2 distribution with degrees of freedom given by the difference in the degrees of freedom associated with the two deviances.

The parameter estimates, $\hat{\beta}$, are asymptotically Normally distributed with variance-covariance matrix:

$$\begin{split} C &= R^{-1} R^{-1^T} \qquad \text{in the full rank case, otherwise} \\ C &= P_1 D^{-2} P_1^T. \end{split}$$

The residuals and influence statistics can also be examined.

The estimated linear predictor $\hat{\eta} = X\hat{\beta}$ can be written as $Hw^{\frac{1}{2}}z$ for an *n* by *n* matrix *H*. The *i*th diagonal elements of *H*, h_i , give a measure of the influence of the *i*th values of the independent variables on the fitted regression model. These are known as leverages.

The fitted values are given by $\hat{\mu} = g^{-1}(\hat{\eta})$ and the deviance residuals by r:

$$r_i = \operatorname{sign}(y_i - \hat{\mu}_i) \sqrt{\operatorname{dev}(y_i, \hat{\mu}_i)}.$$

An option allows prior weights, W, to be used with the model.

If part of the linear predictor can be represented by a variable with a known coefficient then this can be included in the model by using an offset, *o*:

$$\eta = o + \sum \beta_j x_j.$$

If the model is not of full rank the solution given will be only one of the possible solutions but all solutions will give the same predicted values.

References and Further Reading

Cook R D and Weisberg S (1982) Residuals and Influence in Regression Chapman and Hall. Cox D R (1983) Analysis of Binary Data Chapman and Hall.

McCullagh P and Nelder J A (1983) Generalized Linear Models Chapman and Hall.

See Also

nagdmc_extr_reg	computes fitted values, residuals and leverages for a regression.
nagdmc_logit_reg	simplified version of nagdmc_binomial_reg using a logit link and a
	restricted set of parameters.
nagdmc_predict_reg	computes predictions given a fitted regression model.
nagdmc_probit_reg	simplified version of nagdmc_binomial_reg using a probit link and a
	restricted set of parameters.
nagdmc_predict_reg	computes predictions given a fitted regression model.
$binomial_reg_ex.c$	the example calling program.