$Association \ Rules: \ nagdmc_assoc$

Purpose

nagdmc_assoc computes association rules for items sorted in ascending order.

Declaration

Parameters

1:	rec1 - long	Input
	On entry: the index in the data of the first data record used in the analysis. Constraint: $rec1 \ge 0$.	
2:	nrec – long On entry: the number of consecutive records, beginning at rec1 , used in the analysis. Constraint: nrec > 1.	Input
3:	dblk – long $On \ entry:$ the total number of data records (transactions) in the data block. $Constraint: \ \mathbf{dblk} \geq \mathbf{rec1} + \mathbf{nrec}.$	Input
4:	ni - long On entry: the highest integer number used to describe an item. Constraint: $ni > 1$.	Input
5:	nit[dblk] - long On entry: the number of items in each data record. Constraint: $nit[i] \ge 1$, for $i = 0, 1,, dblk - 1$.	Input
6:	data $[n]$ – long On entry: the n items, where n is equal to the sum of elements in nit .	Input
7:	supptype – long $On \ entry:$ if supptype = 0, the support of the antecendent is used to compute support for asso rules; otherwise the support of the itemset is used. $Constraint:$ supptype $\in \{0, 1\}$.	<i>Input</i> ociation
8:	minsupp – double On entry: the minimum level of support, as a percentage, that each itemset must have considered for generating rules. Constraint: $0.0 \leq \text{minsupp} \leq 100.0$.	<i>Input</i> e to be
9:	minconf – double On entry: the minimum level of confidence, as a percentage, in each rule. Constraint: $0.0 \leq \text{minconf} \leq 100.0$.	Input
10:	maxnir – long On entry: the maximum number of items in a rule. Constraint: $1 < \text{maxnir} \leq \text{ni}$.	Input

nagdmc_assoc

11:	maxnr - long			
	On entry: maxnr is the maximum number of rules to generate.			
	Constraint: max $\mathbf{r} \geq 1$.			
12:	nr - long * Output			
	On exit: nr the number of generated rules; $\mathbf{nr} \leq \mathbf{maxnr}$.			
13:	rule[(1 + maxnir) * maxnr] - long Output			
	On exit: the array rule contains the nr generated rules. The <i>i</i> th rule contains $\mathbf{rule}[(1 + \mathbf{maxnir}) * i]$ items, the last of which is the consequent of the rule, for $i = 0, 1,, \mathbf{nr} - 1$.			
14:	$\mathbf{stat}[2*\mathbf{nr}] - \mathtt{double}$ Output			
	On exit: stat contains information on the support and confidence for the nr generated rules. For the <i>i</i> th generated rule, $stat[i * 2]$ contains the support value and $stat[i * 2 + 1]$ the confidence value, for $i = 0, 1,, nr - 1$.			
15:	info - int * Output			
	On exit: info gives information on the success of the function call:			
	0: the function successfully completed its task.			
	$i; i = 1, 2, \dots, 5, 7, 8, \dots, 11$: the specification of the <i>i</i> th formal parameter was incorrect.			
	99: the function failed to allocate enough memory.			
Notation				
	nrecthe number of data records, n .nit $[i]$ the number of items in the <i>i</i> th data record, m_i .			

data	the	itom	data.	\mathbf{V}	
uata	une	nem	uata,	Λ .	

minsupp the minimum support s for a rule.

minconf the minimum confidence c for a rule.

maxnir the maximum number r of items in a rule.

Description

The association rules generator **nagdmc_assoc** finds rules in a set X containing n data records x_i , for i = 1, 2, ..., n. Each data record may contain a different number of integer data values or items. Let the *i*th record contain a list of m_i items:

 $x_{ij} \in Z^+, \quad j = 1, 2, \dots, m_i,$

where $x_{i1} > 0$, and the values are sorted in ascending order:

$$x_{ij} < x_{i(j+1)}, \quad j = 1, 2, \dots, m_i - 1.$$

In general, let L_k denote a set of k distinct items, known as an itemset, and p be the number of records in X that satisfy:

 $L_k \subset X_i$, for $i = 1, 2, \dots, n$.

Hence the support of ${\cal L}_k$ by X is defined as:

$$S(L_k) = \frac{p}{n}.100\%.$$

For a given value s, an itemset with support greater than or equal to s per cent. is known as a frequent itemset.

The algorithm computes the frequent itemsets for itemsets containing from one up to r items, and uses these frequent itemsets:

$$I_k, \quad k = 1, 2, \dots, r,$$

to compute a set of rules of the kind:

Antecendent \rightarrow Consequent,

by forming,

 $\begin{array}{lll} \text{Antecedent:} & A_k = I_k \backslash \{b\};\\ \text{Consequent:} & C_k = \{b\}; \end{array}$

where b is the lth item in I_k , for l = 1, 2, ..., k.

Each rule satisfies conditions for minimum support, s, and confidence, c. Support of a rule can be defined in one of two ways: support of the itemset, $S(I_k)$, as in Agrawal et al. (1993); or support of the items in the antecedent, $S(A_k)$, as in Borgelt and Kruse (2001). Confidence in a rule is defined as:

$$\frac{S(A_k)}{S(I_k)}.100\%.$$

References and Further Reading

Agrawal R, Imielienski T and Swami A (1993) Mining association rules between sets of items in large databases *Proc. Conf. on Management of Data* 207–216 New York: ACM Press.

Borgelt C and Kruse R (2001) Induction of association rules: a priori implementation *Technical Report* School of Computer Science, University of Madgeburg, Germany.

See Also

nagdmc_assoc_data	reads in items from a numeric ASCII file.
nagdmc_assoc_print	prints the rules generated by an association rule analysis.
assoc_ex.c	the example calling program.