

Cox 比例ハザードモデル 米銀行の倒産確率の推定

nag

目次

はじめに	P.01
適用分野	P.01
動作環境	P.01
トライアル申請とダウンロードのご案内	P.01
起動手順	P.01
構成(提供機能とマクロ)	P.01
NAG 数値計算ライブラリのインストール	P.02
マクロを有効にする方法	P.03
マクロの呼び出し方法	P.03
関数の呼び出し方法	P.03
関数の紹介(生存時間解析の関数の詳細)	
Cox_Hazard 関数	
引数	P.04
出力	P.04
Cox_Curve 関数	
引数	P.05
出力	P.05
マクロの紹介 (Cox_比例ハザードマクロの詳細) Cox ステップワイズ 入力画面	P.06 P.06 P.07 P.07 P.08 P.08 P.08 P.09 P.09
使用例(Cox 比例ハザードマクロの使い方)	
Sheet 構成	P.10
データ	P.11
予測に使用する共変量	P.11
Cox ステップワイズマクロの実行結果	P.11
分析&予測 Sheet	
共変量の変更方法	P.12
データセットの変更方法	P.12
参考文献	P.13

はじめに

Cox 比例ハザードモデルは倒産までの期間や製品の寿命といったようなある事柄(イベント)が発生するまでの時間に依存する要因を分析し、モデル化を行う分析手法になります。

適用分野

信用リスク	プリペイメントモデル、倒産確率の推定、格付け遷移確率の推定
マーケティング	退会確率の推定、解約確率の推定、来店確率の推定、購入確率の推定、EBM
医 学 分 野	寛解状態からの再発確率の推定、癌患者の余命推定、臨床試験(薬効持続期間の推定等)
工学分野	信頼性試験、部品の故障時間の推定

動作環境

- Windows 7 / 10.x
- ・ Microsoft Excel 2003 / 2007 / 2010 (32bit 版のみ)
- NAG Fortran Library, Mark 25 (FLDLL254ML)

トライアル申請とダウンロードのご案内 FLDLL254ML 無料トライアルのお申込み NAG Fortran Library, Mark 25

倒産予測マクロ

起動手順

- 1. NAG Fortran Library, Mark 25 (FLDLL254ML) のインストールを行う。
- 2. Excel のマクロを有効にする。
- 3. Cox_倒産予測マクロを起動する。

種類	名称	機能	詳細
	Con Honord	共変量の係数_βの推定と平均、標準偏差、Wald 検定、	DC
関 数	Cox_mazaru	ハザード比、ハザード比の±95%信頼区間の計算	P.0
	Cox_Curve	Cox_Hazard の出力から入力データの生存確率の計算	P.7
		Cox_Hazard 関数の入力データの選択	
	Cox ステップワイズ	Stepwise 法、Forward 法、Backward 法、総当たり法(AIC 最小	P.8
		化法)、強制投入法	
Y 7 L		Cox_Curve 関数の出力結果から以下のグラフを表示	
	生存曲線グラフ	 カプランマイヤー曲線 	P.9
		・ Log-Log プロット	

構成(提供関数とマクロ)

NAG 数値計算ライブラリのインストール

- トライアル申請とダウンロードのご案内の『FLDLL254ML 無料トライアルのお申込み』からトライアル ライセンスの申請を行って下さい。無償トライアルライセンスキーは申請受理後1営業日以内にご連絡い たします。
- 2. トライアル申請とダウンロードのご案内より NAG Fortran Library, Mark 25 をダウンロードしてください。
- 3. ダウンロードをした setup_fldll254ml.exe を起動し、指示に従ってインストールを行ってください。

- 4. 無料トライアルライセンスの設定
 - A. インストールの最後に表示される「Request and/or Install licence key」を選択してください。

B. メールでご案内を致しましたライセンスキーを入力し、Install Licence Key ボタンをクリックする。

Kusari LicenCE Installer の起動方法

Windows メニュー | NAG | NAG FLDLL254ML Licence, Request or Install

Reg Kusari Licence Installer X	Kusari Licence Installer	Х
Request New Licence Please enter licence key or press the request new licence button: FLDLL254M_TRIAL_20**/**/** "exco6iHIdWxhx0bDZoTDILChbT"	Licence for product FLDLL254M loaded.	
< >	ОК	ן
Paste from Clipboard Install Licence Key Close		

マクロを有効にする方法

Excel 2010/2013/2016

- 1. Excel の起動 \rightarrow ファイル \rightarrow オプションをクリックする。
- セキュリティセンター → セキュリティセンターの設定をクリックする。 2.
- マクロの設定→「すべてのマクロを有効にする」を選択する。 3.
- OKボタンをクリックする。 4.

マクロの呼び出し方法

Excel 2010/2013/2016

Excel の起動 | ファイル | オプション | リボンのユーザー設定 | メインタブ | 開発にチェックを入れる。

関数の呼び出し方法

関数の呼び出しボタン → 関数の分類をすべて表示に変更 → Cox_Curve/Cox_Hazrd を選択

	→ 切り取り		MS PJ3	ハック	- 11	• A • •
おり付け ・	□ 」C = ▼	ピ <mark>ー/貼り</mark> 付け	BII	I • 🖂 •	<u>ð</u> - <u>A</u>	* 7 *
	クリップボード	5	i	フォント		12
	A1	- (f _x			
1	A	B	C	D	E	F
1	A	B	C	D	E	F
1 2 3	A	В	C	D	E	F
1 2 3 4	A	B	C	D	E	F

関数の挿入	?	×
関数の検索(S):		
何がしたいかを簡単に入力して、「検索開始」 をクリックし てください。	検索開]]]]]]]]]]]]]]]]]]]
関数の分類(C): すべて表示 🗸 🗸		
Cox Ourve Cox Hazard COX STUART CRITBINOM CUBEKPIMEMBER CUBEMEMBER CUBEMEMBERRPOPERTY		< v
COCHRAN_Q(データ) NAG:k標本の名義(二項)データに対し、コクランのO検定	目を実施し	ます。
<u>この関数のヘルプ</u> のK	**	ッシャル

生存時間解析の関数の詳細

1. Cox_Hazard 関数

関数の引数			?	×
Cox_Hazard				
生存期間	16	=		^
イベント	16 2	=		
共変量	1 5	=		
共変量指定	E6	=		_
共変量名	E S E	=		~
ヘルプがありません。 生7	字期間	=		
数式の結果 =				

A. 引数

	生存期間	データの生存期間を指定
	イベント	イベントデータを指定
必 須	共変量	要因のデータを指定
	共変量指定	要因の選択指定 (1=選択、0=除外)
	共変量名	要因の名前を指定
オプション	Tolerance	許容誤差
X / V H V	Iterations	最大反復回数

B. 出力

出力は配列数式<List of * by 17>で出力されます。

数式を展開する場合は<List of * by 17>が表示されているセルから必要なセル範*行、17列)を選択

し、[Shift] + [Ctrl] + [Enter]を行ってください。

<出力例>

List of 25 by	17>	X二乗値	自由度	P値							生存期間	生存関数	<list 25="" by<="" of="" th=""><th>2></th><th><list 22<="" of="" th=""><th>2 by 2></th></list></th></list>	2>	<list 22<="" of="" th=""><th>2 by 2></th></list>	2 by 2>
対数尤度	尤度比検定	75.660	3	0.000							2	0.988	<sublist 2<="" of="" th=""><th>4 by 2></th><th>Ln(期間)</th><th>Ln(-Ln(生存期間</th></sublist>	4 by 2>	Ln(期間)	Ln(-Ln(生存期間
-147.749	スコア検定	142.631	3	0.000							3	0.982	期間 生	存確率	0.693	-4.449
AIC	Wald検定	82.164	3	0.000							4	0.979	0	1	1.099	-4.449
301.497											6	0.962	2	1	1.099	-4.010
IDF		平均値	係数 β	標準誤差	X二乗値	自由度	P値	ハザード比	95%下限	95%上限	7	0.932	2	0.988	1.386	-4.010
10	TOTA	-2.468	-2.380	0.466	26.114	1	0.000	0.093	0.037	0.231	8	0.911	3	0.988	1.386	-3.840
長大生存期間	NITA	-0.017	-20.111	5.115	15.462	1	0.000	0.000	0.000	0.000	9	0.895	3	0.982	1.792	-3.840
12	NITC	-0.414	0.351	0.235	2.233	1	0.135	1.420	0.896	2.250	10	0.878	4	0.982	1.792	-3.260
											11	0.872	4	0.979	1.946	-3.260
	T .	-	1								12	0.843	6	0.979	1.946	-2.647
			1							-			6	0.962	2.079	-2.647
										1			7	0.962	2.079	-2.378
	11		1							1			7	0.932	2.197	-2.378
	1		1						1				8	0.932	2.197	-2.199
	N,		1						1				8	0.911	2.303	-2.199
	N												9	0.911	2.303	-2.043
	1 A.							1					9	0.895	2.398	-2.043
		1 /						1					10	0.895	2.398	-1.992
	<u>`</u>							1					10	0.878	2.485	-1.992
		1					1						11	0.878	2.485	-1.767
		N Li					1						11	0.872	2.485	-1.767
		111					/						12	0.872		
		111				1							12	0.843		
		N/				1							12	0.843		

2. Cox_Curve 関数

関数の引数			?	×
Cox_Curve				
最大生存期間	5	=		^
NDF	1	=		
共変量	1 50	=		
係数。	EN:	=		
生存期間と生存確率	1	=		~
ヘルブがありません。 最大な	主存期間	-		
数式の結果 =				
<u>この関数のヘルプ(H)</u>		H	OK ++	っしセル

A. 引数

	最大生存期間	Cox_Hzard の出力結果、最大生存期間の値
	NDF	Cox_Hzard の出力結果、NDF の値
2	共変量	予測用データの要因
必须	係数_β	Cox_Hzard の出力結果、係数_βの値
	生存期間と生存確率	Cox_Hzard の出力結果、生存時間と生存関数の値
	共変量の平均値	Cox_Hzard の出力結果、平均値の値
オプション	共変量指定	要因の選択指定 (1=選択、0=除外)

B. 出力

出力は配列数式<List of * by 6>で出力されます。

数式を展開する場合は<List of * by 6>が表示されているセルから必要なセル範囲(*行、6 列)を選 択し、[Shift] + [Ctrl] + [Enter]を行ってください。

<出力例>

<list 25="" 6="" by="" of=""></list>		<list 2="" 25="" by="" of=""></list>		<list 2="" 22="" by="" of=""></list>	
生存期間	主存関数	(SubList of 24 by 2)		Ln(期間)	Ln(-Ln(生存期間))
2	0.861695041	期間	生存確率	0.693147181	-1.904790315
3	0.793695541	0	1	1.098612289	-1.904790315
4	0.760510915	2	1	1.098612289	-1.465098026
6	0.613292649	2	0.861695041	1.386294361	-1.465098026
7	0.40531198	3	0.861695041	1.386294361	-1.295485881
8	0.306925823	3	0.793695541	1.791759469	-1.295485881
9	0.243510903	4	0.793695541	1.791759469	-0.715570612
10	0.191767767	4	0.760510915	1.945910149	-0.715570612
11	0.175905551	6	0.760510915	1.945910149	-0.101923996
12	0.113539931	6	0.613292649	2.079441542	-0.101923996
		7	0.613292649	2.079441542	0.166487846
		7	0.40531198	2.197224577	0.166487846
		8	0.40531198	2.197224577	0.345427421
生存曲線マクロで	グラフ出力す	る 8	0.306925823	2.302585093	0.345427421
際に選択する選択	ヤル	9	0.306925823	2.302585093	0.501665914
		9	0.243510903	2.397895273	0.501665914
Ctrl ホタンを使用	日して複数のセ	ルを 10	0.243510903	2.397895273	0.552624589
同時に選択するこ	.とができます	。 10	0.191767767	2.48490665	0.552624589
		11	0.191767767	2.48490665	0.777304804
		11	0.175905551	2.48490665	0.777304804
		12	0.175905551		
		12	0.113539931		
		12	0.113539931	生仔囲線マク	ロ C LogLog ノロッ
				を出力する際	に選択するセル。
				■ Ctrl ボタンを	使用して複数のセル
				同時に選択す	ることができます。

Cox_比例ハザードマクロの機能詳細

1. Cox ステップワイズ

Stepwise、Forward、Backward、総当たり法(AIC 最小化法)強制投入法による変数の選択

A. 入力画面

B. 引数

	須	生存期間	生存時間(倒産期間)のデータ
必		共変量	共変量のデータ
		イベント	イベントのデータ(1=非倒産、0=倒産)
		出力先	共変量の選択結果(1=選択、0=除外)
		共変量候補	モデル式に含める共変量の選択候補の指定
オプシ	✓ = ン	変数名	共変量候補全ての共変量名のセルを指定
		計算経過出力	共変量の選択過程の統計量の表示
		変数選択法	共変量の選択方法の指定

C. 出力1

共変量の選択結果は指定されたセルへ0と1で表示されます。

0	モデル式の共変量へ選択
1	モデル式の共変量から除外

D. 出力2(計算経過出力が指定されている場合)

	出力項目	出力内容	備考
エジルギの海内曲	対数尤度	数値	低い値ほどモデル式の適応度
モナル式の適応度	AIC	数値 (当てはまり)が高い	
	尤度比検定	χ^2 統計量	P 値 ≦ 有意水準で有意と判定
モデルの診断	スコア検定	自由度	有意水準1% =0.01
	Wald 検定	P 値	有意水準 5% = 0.05

共変量の推定

項目	備考
反数 (0)	+の場合は共変量の数値が大きいほどリスクが高くなる。
徐釵(p)	-の場合は共変量の数値が小さいほどリスクが高くなる。
海 淮 記 辛	グリーンウッドの公式
保华砄左	係数(β)のばらつき度合い。
	Wald 検定
診断	自由度1のχ ² 統計分布の片側確率(Ρ値)を算出し
	有意水準 5%より大きい場合は要因が不適切と判定可能
	ハザード比 = $\exp^{(\beta)}$
いぜ ビビ	共変量が1から5へ上昇した場合の計算例
	 ハザード比 = 1.5 → 5×1.5 = 7.5 倍のリスクが上昇
	 ハザード比 = 0.5 → 5 × 0.5 = 2.5 倍のリスクが上昇

E. 変数選択法の種類

変数選択法	投入基準	除去基準	備考
Stopwigo 1/2			基準値より小さい共変量をモデル式へ追加し、
Stepwise 法	Score 検定	Wald 検定	基準値より高い共変量は削除する。
(复数咱倾伍)	(減法) 共変量の追加		共変量の追加と削除を繰り返し行う方法
Forward 法	Saara 栓定		基準値より小さい共変量を 1 つずつモデル式へ
(変数増加法)	Score 快足		追加する方法
Backward 法		Wald 栓字	基準値より高い共変量を 1 つずつモデル式から
(変数削減法)	_	wald 便足	削除する方法
公 当たり注		是小化	全ての共変量の組み合わせから AIC が最小に
応当たり伝	AIC	取力当日	なる組み合わせをモデル式に選択する方法
お判セス注	1F	+12 -5	共変量候補のオプションで指定した共変量で
18时1文八伝	<u> </u>	旧化	モデル式を作成する方法

nag

F. 共変量の追加基準

Stepwise 法(変数増減法)と Forward 法(変数増加法)の共変量を追加する際の有意水準

G. 共変量の削除基準

Stepwise 法(変数増減法)と Backward 法(変数削減法)の共変量を削除する際の有意水準

- 2. 生存曲線グラフマクロ
 - A. 操作画面

<list 25="" 6="" by="" of=""></list>	1	<list of<="" th=""><th>f 25 by 2></th><th>1</th><th><list 2="" 22="" by="" of=""></list></th><th></th><th></th></list>	f 25 by 2>	1	<list 2="" 22="" by="" of=""></list>		
生存期間	生存関数	<sublis< td=""><td>st of 24 by 2></td><td></td><td>Ln(期間)</td><td>Ln(-Ln(生存期間))</td><td></td></sublis<>	st of 24 by 2>		Ln(期間)	Ln(-Ln(生存期間))	
2	0.861695041	期間		生存確率	0.693147181	-1.904790315	
9	0.793695541	1	0	1	1.098612289	-1.904790315	
4	0.760510915		2	1	1.098612289	-1.465098026	
6	0.613292649		2	0.861695041	1.386294361	-1.465098026	
7	0.40531198	1	3	0.861695041	1.386294361	-1.295485881	
8	0.306925823	1	3	0.793695541	1.791759469	-1.295485881	
9	0.243510903		4	0.793695541	1.791759469	-0.715570612	
10	0.191767767		4	0.760510915	1.945910149	-0.715570612	
11	0.175905551		6	0.760510915	1.945910149	-0.101923996	
12	0.113539931		6	0.613292649	2.079441542	-0.101923996	
			7	0.613292649	2.079441542	0.166487846	
			7	0.40531198	2.197224577	0.166487846	
В			8	0.40531198	2.197224577	0.345427421	
マクロ		?	× 8	0.306925823	2.302585093	0.345427421	
マクロ名(M):		2	9	0.306925823	2.302585093	0.501665914	
Coxステップワイズ		ま 実行	ī(<u>R</u>) 9	0.243510903	2.397895273	0.501665914	
Coxステップワイズ 生存曲線グラフ		^ ステップ	10	0.243510903	2.397895273	0.552624589	
		(64	E(r) 10	0.191767767	2.48490665	0.552624589	
		(IIII)	11	0.191767767	C 2.48490665	0.777304804	
		作用	x(O) 11	0.175905551	マクロ		? ×
		育明約	^(D) 12	0.175905551	マクロ名(M):		2
		オプショ	ສ>(@) 12	0.113539931	生存曲線グラフ	55	実行(<u>R</u>)
		×	12	0.113539931	Coxステップワイズ 生存曲線グラフ	^	ステップ イン(S
マクロの保存先(A): 開いている	るすべてのブック	~			Sandove Rock and and	-	(行生/F)
影明							御(元)(三)
							(作成(C)
			A last				肖川涂(D)
		+	ャンセル				オプション(0).
					3		
					マクロの保存先(A): 開い	ているすべてのブック 🗸 🗸	
					11 兄日月		
							キャンセノ

- B. 生存曲線(生存期間と確率)表示
 - ① Cox_Curve 関数の出力結果の2列目に表示されている<List of * by 2>を選択
 - ② 生存曲線マクロを起動し、実行ボタンをクリック
 - 生存曲線の表示

生存曲線は各データの時間に対応した生存確率を示すグラフになります。 縦軸 = 確率 横軸 = 時間(期間)

- ※ 複数の生存曲線を同一のグラフに表示する場合はCtrlボタンを押しながら①のセル<List of * by 2>の選択を行ってください。
- C. Log-Log プロット(比例ハザード性の確認)
 - ① Cox_Curve 関数の出力結果の4列目に表示されている<List of * by 2>を選択
 - ② 生存曲線マクロを起動し、実行ボタンをクリック
 - ③ Log-Log プロットの表示

Cox 比例ハザードモデルは比例ハザード性が成立している事が前提の分析手法になります。 Log-Log プロットのプロット図が並行であれば比例ハザード性が成立している根拠となります。

使用例

Cox 比例ハザードマクロの使い方(分析&予測のシート)

Cox_倒産予測マクロのサンプルデータは FDIC(米連邦預金保険公社)のアニュアルレポートに掲載されている 2009 年1月~12 月までの一年間で倒産銀行 62 行と非倒産銀行 181 行の合計 243 行のデータを使用して分析 と倒産の予測・検証を行っています。

1.	Sheet	構成
----	-------	----

Sheet	データ数	項目
FDIC データ	7230 件	倒産銀行:4~119行目、非倒産銀行:120~7233行目
フィルタデータ	7230件	ステータス、MSA_NO、州名によってフィルタをかけたデータ
抽出データ	243 件	欠損値を削除し、以下の条件で抽出したデータ
		・ 倒産・非倒産銀行の TOTAL_ASSETS が±0.5 倍以上離れていない。
		・ 倒産銀行1行に対し、非倒産銀行を2~3行の割合で抽出。
分析用データ	243 件	乱数を使用してモデル開発用と検証用に分けたデータ
モデル開発用データ	149 件	分析、モデル作成用に抽出したデータ
検証用データ	94 件	モデルの検証用に抽出したデータ
分析&予測	48 件	予測用に検証用データから抽出したデータ

2. データ: FDIC (米連邦預金保険公社)

Name	銀行名
Offices	店舗数
ESTYMD	設立日
Closing Date	倒產日時
TOTAL_ASSETS	総資産
RCON2200_TOTAL_DEPOSITS	預金合計
TOTAL_EQUITY_CAPITAL	資本合計金
LOANS_LEASES_NET_UNEARNED_INCOME	貸付金合計
NET_INCOME	正味利益
RCON1766_C_I_LOANS	商業&事業貸付
ステータス	銀行の属性を表すデータ
MSA_NO (Metropolitan Statics Area No)	地域特性を表すデータ
State	州名

3. 予測に使用する共変量

分類	共変量	要因の定義			
次卡	TCTA	log(資本合計金/総資産)			
員平	TLTC	log(貸付金合計/総資産)			
	NITA	正味利益/総資産			
4.X 益	NITC	正味利益/資本金合計			
法乱州	LODE	貸付金合計/預金合計			
(元男川生	LOTA	貸付金合計/総資産			
貸付金の構成	CLTL log(商業&事業貸付/貸付金合計)				

4. Cox ステップワイズマクロの実行結果

【Step1】NITC をモデル式へ投入

共変量名	係数_β	標準誤差	X 二乗値	自由度	P值	ハザード	95%下限	95%上限
NITC	-0.501	0.076	42.955	1	0.000	0.606	0.521	0.704

対数尤度:-169.038 AIC:340.075

【Step2】 TCTA をモデル式へ投入

共変量名	係数_β	標準誤差	X 二乗値	自由度	P值	ハザード	95%下限	95%上限
ТСТА	-2.090	0.388	28.963	1	0.000	0.124	0.058	0.265
NITC	-0.060	0.116	0.265	1	0.606	0.942	0.750	1.183

対数尤度:-156.393 AIC:316.786

【Step3】NITC をモデル式から削除

共変量名	係数_β	標準誤差	X 二乗値	自由度	P值	ハザード	95%下限	95%上限
TCTA	-2.240	0.251	79.638	1	0.000	0.106	0.065	0.174

対数尤度:-156.522 AIC: 315.044

使用例

【Step4】NITA をモデル式へ投入

共変量名	係数_β	標準誤差	X 二乗値	自由度	P值	ハザード	95%下限	95%上限
TCTA	-1.752	0.286	37.514	1	0.000	0.173	0.099	0.304
NITA	-14.011	3.266	18.400	1	0.000	0.000	0.000	0.000
a state to the								

対数尤度:-149.520 AIC:303.040

【Step5】NITC をモデル式へ投入

共変量名	係数_β	標準誤差	X 二乗値	自由度	P値	ハザード	95%下限	95%上限
TCTA	-2.380	0.466	26.114	1	0.000	0.093	0.037	0.231
NITA	-20.111	5.115	15.462	1	0.000	0.000	0.000	0.000
NITC	0.351	0.235	2.233	1	0.135	1.420	0.896	2.250

対数尤度:-147.749 AIC:301.497

- 5. 分析&予測 Sheet
 - A. 共変量の変更方法

セル F4:L4 の数値を変更してください。

1	1	1	1	1	1	1	
ТСТА	TLTC	NITA	NITC	LODE	LOTA	CLTL	

1 = モデル式の共変量 0 = モデル式の共変量から除外

1	0	1	1	0	0	0	-
ТСТА	TLTC	NITA	NITC	LODE	LOTA	CLTL	

B. データセットの変更方法(非倒産銀行と倒産銀行のデータセットの変更)
 予測を行う為のデータを変更する場合は予測用データのイベント項目(D15:D62)のにある非倒産
 銀行のセルを1つだけ選択し、「データの切り替え」ボタンとクリックしてください。

nag

参考文献

- [1] 大橋泰雄,浜田知久馬,生存時間解析 SAS による生物統計,東京大学出版会, 1995
- [2] 木島正明,小守林克哉,信用リスク評価の数理モデル,朝倉書店, 1999
- [3] 中村剛, Cox 比例ハザードモデル, 朝倉書店, 2001
- [4] 森平爽一郎,信用リスクモデリング,朝倉書店,2009
- [5] 赤澤宏平,柳川曉,サバイバルデータの解析,近代科学者社,2010
- [6] 森平爽一郎,信用リスクの測定と管理,中央経済社,2011
- [7] Lane, W.R., S.W. Looney and J.W. Wansley, "An application of the Cox proportional hazard model to bank failure," Journal of Banking and Finance, 10, 511-532, 1986