
NAGWare f95 and reliable, portable

programming.

Malcolm Cohen

The Numerical Algorithms Group Ltd., Oxford

”How to detect errors using NAGWare f95, and how to write
portable, reliable programs. Support for features from the latest
Fortran standard and plans for future releases.”

Contents

1. The Fortran Standard:

• portable programming;

• modern programming;

• language development.

2. NAGWare f95 and the Fortran Builder:

• detecting errors at compile time;

• detecting errors at run time;

• Fortran 2003 features;

• future plans.

1

Portable programming

A portable program

• can be run on many systems without source code changes;

• gives correct results on those systems.

Portable programming reduces the lifetime cost of the program:

• no need to have different versions on different machines;

• reduces amount of maintenance;

• increases confidence in correctness.

2

The Fortran Standard

• features that must be supported by all Fortran compilers;

• precise definitions so that the features work the same way
on all compilers.

All Fortran compilers have extra features; but using an extra
feature means that if you try to use the program on another
machine

• the other compiler might not have the feature;

• even if it has the feature, it might not work the same way.

3

History

1954 Fortran project starts at IBM.

1966 Fortran 66, the first programming language standard.

1978 Fortran 77; modernisation begins.

1991 Fortran 90 (major revision). The basis of modern Fortran.

1997 Fortran 95 (minor revision).

2004 Fortran 2003 (major revision). Object-oriented and more.

4

Modern Programming

Modern Fortran is:

• easier to write,

• more reliable (newer features are less error-prone),

• more powerful,

• efficient,

• supported by all the major manufacturers.

5

Modern Fortran Key Features (1)

Usability

• Long names (6→31 characters).

• Free format source form.

• Modern control structures.

• Modern data structures.

• Modules.

6

Modern Fortran Key Features (2)

Functionality

• Dynamic memory allocation; especially allocatable arrays.

• Array expressions and assignment.

• Powerful intrinsic functions.

7

Modern Control Structures

• Generalised DO loop

(including DO WHILE, EXIT, CYCLE);

• SELECT CASE construct.

Reduces the need for GOTO, and therefore

• makes code easier to read;

• reduces errors.

8

Modern Data Structures

• Derived types are structures.

• Components can be arrays or scalars.

They can be of intrinsic types (e.g. Real) or derived types.

• Components can be pointers.

Type line

Integer :: start(2), end(2)

Real :: width

Type(Colour) :: colour

Type(line),Pointer :: next_line

End Type

9

Modules

• A module can contain named constants, type definitions,

variables, and procedures.

• Defined once and then used anywhere; avoids possible mis-

takes with multiple definitions.

• Calls to module procedures can be checked at compile time.

• Accessed with a USE statement.

10

A Simple Module

Module int64_module

Integer,Parameter :: int64 = selected_int_kind(18)

Contains

Integer(int64) Function gcd(a,b) ! Greatest Common Divisor

Integer(int64),Intent(In) :: a,b

...

End function

End Module

Program Example

Use int64_module

Integer(int64) x,y

...

Print *,gcd(x,y)

End

11

Allocatable Arrays

• Dynamic allocation.

• No need for pointers – fast.

• Automatic deallocation – safe.

• STAT= option to handle failure.

12

Allocatable Array Example

Real,Allocatable :: workspace(:)

...

Allocate(workspace(n*4+10),Stat=istatus)

If (istatus==0) Then

Call Solve_problem(...,workspace)

Else

Print *,’Cannot allocate workspace, error code’,istatus

End if

13

Language Development

• The Fortran Standard is frequently revised.

• Revisions always aim for backwards compatibility.

• Vendors develop via the standard to reduce risk.

• Key features of Fortran 2003:

– Allocatable components.

– IEEE arithmetic support.

– Object-oriented programming.

– Interoperability with C.

14

Fortran 2003 Design Goals

Overall Goals

1. compatible with Fortran 95;

2. safe and efficient.

Object-oriented Goals

• Simple to describe.

• Simple to use.

• Simple to implement.

• Safe to use: detect errors at compile time, not run time.

15

NAGWare f95: Overview

• World’s first Fortran 90 compiler.

• Fortran 95 + many Fortran 2003 features.

• Fortran Builder development environment (Japan only).

• Detects many errors at compile time.

• Comprehensive checking for non-standard programs.

• Unsurpassed runtime error detection.

16

Runtime Error Detection

• Normal checking features: array subscripts, null pointers.

• Advanced checking features: procedure calls, dangling point-

ers, undefined variables.

• Memory allocation tracing.

17

Procedure call checking - 1

Extra information is passed on a procedure reference:

• type and rank of the expected result,

• number of arguments,

• for each argument,

– whether it is an expression,

– class: normal, pointer, allocatable, assumed-shape, value,
polymorphic.

– whether it is a procedure,

– type, rank,

– number of elements

18

Procedure call checking - 2

If there is a mistake in the call to the procedure, the program is

terminated with an informative error message.

Invalid procedure reference -

Actual argument for dummy argument I is REAL instead of INTEGER

Program terminated by fatal error

In PV, line 1 of file2.f90

Called by S, line 23 of file1.f90

Called by MAIN, line 7 of file1.f90

Procedures compiled with -C=calls can be mixed with ones com-

piled without; checking will be done only when both the caller

and the called routine are compiled with the option.

19

Dangling pointers

1. Pointer refers to an unsaved local variable; on return from
the procedure, the pointer becomes undefined.

2. Pointer refers to allocated memory; this memory is deallo-
cated without clearing the pointer.

Both of these are quite common in C and C++ programs, and
cause mysterious failures and crashes long after the event. These
can be very hard to detect without compiler assistance.

Procedures compiled with -C=dangling can be mixed with ones
compiled without; checking will be done only for pointer assign-
ments in checked routines.

20

Dangling Pointer Example 1

Program Test

Real,Pointer :: x(:,:)

Call make_dangle

x(10,10) = 0

Contains

Subroutine make_dangle

Real,Target :: y(100,200)

x => y

End Subroutine

End

Reference to dangling pointer X

- Target was RETURNed from procedure TEST:MAKE_DANGLE

Program terminated by fatal error

In TEST, line 4 of dangle.f90

21

Dangling Pointer Example 2

Program dangle2

Real,Pointer :: x(:),y(:)

Allocate(x(100))

y => x

Deallocate(x)

y = 3

End

Reference to dangling pointer Y

- Target was DEALLOCATEd at line 5 of dangle2.f90

Program terminated by fatal error

In DANGLE2, line 6 of dangle2.f90

22

Undefined variables

An undefined variable is one

• which has never been given a value, or

• which has lost its value.

Requires the whole program to be compiled with the -C=undefined

option.

To just detect undefined floating-point variables, the -nan option

can be used. This is faster, and can be used on parts of a

program, but does not print such an informative message.

23

Undefined Variable Example

Program undef1

Real x(100)

Read *,n

Read *,x(1:n)

Print *,product(x)

End

Reference to undefined variable X

Program terminated by fatal error

In UNDEF1, line 5 of undef1.f90

*** Arithmetic exception: - aborting

In UNDEF1, line 5 of undef1.f90

24

Memory Allocation Tracing

The -mtrace option traces memory allocation and deallocation.
With the f95mcheck program this can be used to find memory
leaks.

Program memory_leak

Real,Pointer :: x(:,:)

Allocate(x(10,20)) ! Leak

x = 0

Allocate(x(3,4))

Deallocate(x)

Allocate(x(5,6)) ! Leak

Allocate(x(20,30))

x = 3

Deallocate(x)

End

25

Memory Allocation Tracing

Raw Output

[Allocated item 1 (size 1025) = Z’2E0008’]
[Allocated item 2 (size 1025) = Z’2E0418’]
[Allocated item 3 (size 1025) = Z’2E0828’]
[Allocated item 4 (size 800) at line 3 of memleak.f90 = Z’2F0008’]
[Allocated item 5 (size 48) at line 5 of memleak.f90 = Z’2F0330’]
[Deallocated item 5 (size 48, at Z’2F0330’) at line 6 of memleak.f90]
[Allocated item 6 (size 120) at line 7 of memleak.f90 = Z’2F0368’]
[Allocated item 7 (size 2400) at line 8 of memleak.f90 = Z’2F03E8’]
[Deallocated item 7 (size 2400, at Z’2F03E8’) at line 10 of memleak.f90]
[Deallocated item 2 (size 1025, at Z’2E0418’)]
[Deallocated item 3 (size 1025, at Z’2E0828’)]
[Deallocated item 1 (size 1025, at Z’2E0008’)]

f95mcheck Output

7 allocations
***MEMORY LEAK:
LEAK: Allocation 4 (size 800) = Z’2F0008’ at line 3 of memleak.f90
LEAK: Allocation 6 (size 120) = Z’2F0368’ at line 7 of memleak.f90

26

Fortran 2003 features: supported now

• Allocatable components.

• IEEE arithmetic support.

• Object-oriented programming.

27

Allocatable components

• Dynamic sizes for array components.

• More efficient than pointer components.

• Safer than pointer components – automatic deallocation.

Type matrix

Real,Allocatable :: value(:,:)

End type

...

Type(matrix) x

...

Allocate(x%value(100,200))

...

28

IEEE arithmetic support

• IEEE exception handling (e.g. overflow and underflow).

• IEEE operations (e.g. remainder, nextafter)

• IEEE inquiry functions (e.g. IEEE_IS_NAN).

• Rounding mode control.

• Halting mode control.

Use ieee_arithmetic

...

z = x/y

If (ieee_is_nan(z)) Stop ’Result is Not a Number’

29

Basic Object-Oriented Features

Available now:

• Type extension (single inheritance).

• Polymorphic variables.

• Type selection.

30

Basic Object-Oriented Summary

• “Type extension” produces a new type by extending an old

one. The new type inherits the components of the old one.

• A polymorphic variable can have a different (dynamic) type

at different times. They are always dummy arguments, point-

ers, or allocatable.

• Type selection detects the dynamic type of a polymorphic

variable, and provides direct access to extended components.

31

NAGWare f95 Future Plans

• Fortran Builder for English Windows.

• More Fortran 2003 features.

• Improved performance.

• Further improvements to error detection.

32

Fortran 2003 features: next update

• Interoperability with C.

• Stream I/O and other I/O enhancements.

• New intrinsic functions and modules.

• More object-oriented features.

• Many other additions.

We have just started to ship the next update for Linux.

33

Advanced Object-Oriented Features

Coming soon:

• Cloning.

• Type-bound procedures.

• Generic procedures and operators.

All these are included in the next update.

34

Conclusion

• The Fortran Standard enables portable programming.

• Using new Fortran features can improve reliability.

• NAGWare f95 has unparalleled error detection.

• NAGWare f95 is in the process of being upgraded to the

latest Fortran Standard.

35

Resources

Slides available on web page:

http://www.nag-j.co.jp/~malcolm/May2006-J.pdf

Slides about Modern Fortran programming:

http://www.nag-j.co.jp/~malcolm/Modern-Fortran-J.pdf

More slides about Fortran 2003 (in English):

http://www.nag-j.co.jp/~malcolm/F2003-Illustrated.pdf

Reference Book (in English): “Fortran 95/2003 Explained”
by Metcalf, Reid and Cohen.

36

