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Portable programming

A portable program

• can be run on many systems without source code changes;

• gives correct results on those systems.

Portable programming reduces the lifetime cost of the program:

• no need to have different versions on different machines;

• reduces amount of maintenance;

• increases confidence in correctness.
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The Fortran Standard

• features that must be supported by all Fortran compilers;

• precise definitions so that the features work the same way
on all compilers.

All Fortran compilers have extra features; but using an extra
feature means that if you try to use the program on another
machine

• the other compiler might not have the feature;

• even if it has the feature, it might not work the same way.
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History

1954 Fortran project starts at IBM.

1966 Fortran 66, the first programming language standard.

1978 Fortran 77; modernisation begins.

1991 Fortran 90 (major revision). The basis of modern Fortran.

1997 Fortran 95 (minor revision).

2004 Fortran 2003 (major revision). Object-oriented and more.
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Modern Programming

Modern Fortran is:

• easier to write,

• more reliable (newer features are less error-prone),

• more powerful,

• efficient,

• supported by all the major manufacturers.
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Modern Fortran Key Features (1)

Usability

• Long names (6→31 characters).

• Free format source form.

• Modern control structures.

• Modern data structures.

• Modules.
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Modern Fortran Key Features (2)

Functionality

• Dynamic memory allocation; especially allocatable arrays.

• Array expressions and assignment.

• Powerful intrinsic functions.
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Modern Control Structures

• Generalised DO loop

(including DO WHILE, EXIT, CYCLE);

• SELECT CASE construct.

Reduces the need for GOTO, and therefore

• makes code easier to read;

• reduces errors.
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Modern Data Structures

• Derived types are structures.

• Components can be arrays or scalars.

They can be of intrinsic types (e.g. Real) or derived types.

• Components can be pointers.

Type line

Integer :: start(2), end(2)

Real :: width

Type(Colour) :: colour

Type(line),Pointer :: next_line

End Type
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Modules

• A module can contain named constants, type definitions,

variables, and procedures.

• Defined once and then used anywhere; avoids possible mis-

takes with multiple definitions.

• Calls to module procedures can be checked at compile time.

• Accessed with a USE statement.
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A Simple Module

Module int64_module

Integer,Parameter :: int64 = selected_int_kind(18)

Contains

Integer(int64) Function gcd(a,b) ! Greatest Common Divisor

Integer(int64),Intent(In) :: a,b

...

End function

End Module

Program Example

Use int64_module

Integer(int64) x,y

...

Print *,gcd(x,y)

End
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Allocatable Arrays

• Dynamic allocation.

• No need for pointers – fast.

• Automatic deallocation – safe.

• STAT= option to handle failure.
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Allocatable Array Example

Real,Allocatable :: workspace(:)

...

Allocate(workspace(n*4+10),Stat=istatus)

If (istatus==0) Then

Call Solve_problem(...,workspace)

Else

Print *,’Cannot allocate workspace, error code’,istatus

End if
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Language Development

• The Fortran Standard is frequently revised.

• Revisions always aim for backwards compatibility.

• Vendors develop via the standard to reduce risk.

• Key features of Fortran 2003:

– Allocatable components.

– IEEE arithmetic support.

– Object-oriented programming.

– Interoperability with C.
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Fortran 2003 Design Goals

Overall Goals

1. compatible with Fortran 95;

2. safe and efficient.

Object-oriented Goals

• Simple to describe.

• Simple to use.

• Simple to implement.

• Safe to use: detect errors at compile time, not run time.
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NAGWare f95: Overview

• World’s first Fortran 90 compiler.

• Fortran 95 + many Fortran 2003 features.

• Fortran Builder development environment (Japan only).

• Detects many errors at compile time.

• Comprehensive checking for non-standard programs.

• Unsurpassed runtime error detection.
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Runtime Error Detection

• Normal checking features: array subscripts, null pointers.

• Advanced checking features: procedure calls, dangling point-

ers, undefined variables.

• Memory allocation tracing.
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Procedure call checking - 1

Extra information is passed on a procedure reference:

• type and rank of the expected result,

• number of arguments,

• for each argument,

– whether it is an expression,

– class: normal, pointer, allocatable, assumed-shape, value,
polymorphic.

– whether it is a procedure,

– type, rank,

– number of elements
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Procedure call checking - 2

If there is a mistake in the call to the procedure, the program is

terminated with an informative error message.

Invalid procedure reference -

Actual argument for dummy argument I is REAL instead of INTEGER

Program terminated by fatal error

In PV, line 1 of file2.f90

Called by S, line 23 of file1.f90

Called by MAIN, line 7 of file1.f90

Procedures compiled with -C=calls can be mixed with ones com-

piled without; checking will be done only when both the caller

and the called routine are compiled with the option.
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Dangling pointers

1. Pointer refers to an unsaved local variable; on return from
the procedure, the pointer becomes undefined.

2. Pointer refers to allocated memory; this memory is deallo-
cated without clearing the pointer.

Both of these are quite common in C and C++ programs, and
cause mysterious failures and crashes long after the event. These
can be very hard to detect without compiler assistance.

Procedures compiled with -C=dangling can be mixed with ones
compiled without; checking will be done only for pointer assign-
ments in checked routines.

20



Dangling Pointer Example 1

Program Test

Real,Pointer :: x(:,:)

Call make_dangle

x(10,10) = 0

Contains

Subroutine make_dangle

Real,Target :: y(100,200)

x => y

End Subroutine

End

Reference to dangling pointer X

- Target was RETURNed from procedure TEST:MAKE_DANGLE

Program terminated by fatal error

In TEST, line 4 of dangle.f90
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Dangling Pointer Example 2

Program dangle2

Real,Pointer :: x(:),y(:)

Allocate(x(100))

y => x

Deallocate(x)

y = 3

End

Reference to dangling pointer Y

- Target was DEALLOCATEd at line 5 of dangle2.f90

Program terminated by fatal error

In DANGLE2, line 6 of dangle2.f90
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Undefined variables

An undefined variable is one

• which has never been given a value, or

• which has lost its value.

Requires the whole program to be compiled with the -C=undefined

option.

To just detect undefined floating-point variables, the -nan option

can be used. This is faster, and can be used on parts of a

program, but does not print such an informative message.
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Undefined Variable Example

Program undef1

Real x(100)

Read *,n

Read *,x(1:n)

Print *,product(x)

End

Reference to undefined variable X

Program terminated by fatal error

In UNDEF1, line 5 of undef1.f90

*** Arithmetic exception: - aborting

In UNDEF1, line 5 of undef1.f90
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Memory Allocation Tracing

The -mtrace option traces memory allocation and deallocation.
With the f95mcheck program this can be used to find memory
leaks.

Program memory_leak

Real,Pointer :: x(:,:)

Allocate(x(10,20)) ! Leak

x = 0

Allocate(x(3,4))

Deallocate(x)

Allocate(x(5,6)) ! Leak

Allocate(x(20,30))

x = 3

Deallocate(x)

End
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Memory Allocation Tracing

Raw Output

[Allocated item 1 (size 1025) = Z’2E0008’]
[Allocated item 2 (size 1025) = Z’2E0418’]
[Allocated item 3 (size 1025) = Z’2E0828’]
[Allocated item 4 (size 800) at line 3 of memleak.f90 = Z’2F0008’]
[Allocated item 5 (size 48) at line 5 of memleak.f90 = Z’2F0330’]
[Deallocated item 5 (size 48, at Z’2F0330’) at line 6 of memleak.f90]
[Allocated item 6 (size 120) at line 7 of memleak.f90 = Z’2F0368’]
[Allocated item 7 (size 2400) at line 8 of memleak.f90 = Z’2F03E8’]
[Deallocated item 7 (size 2400, at Z’2F03E8’) at line 10 of memleak.f90]
[Deallocated item 2 (size 1025, at Z’2E0418’)]
[Deallocated item 3 (size 1025, at Z’2E0828’)]
[Deallocated item 1 (size 1025, at Z’2E0008’)]

f95mcheck Output

7 allocations
***MEMORY LEAK:
LEAK: Allocation 4 (size 800) = Z’2F0008’ at line 3 of memleak.f90
LEAK: Allocation 6 (size 120) = Z’2F0368’ at line 7 of memleak.f90
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Fortran 2003 features: supported now

• Allocatable components.

• IEEE arithmetic support.

• Object-oriented programming.
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Allocatable components

• Dynamic sizes for array components.

• More efficient than pointer components.

• Safer than pointer components – automatic deallocation.

Type matrix

Real,Allocatable :: value(:,:)

End type

...

Type(matrix) x

...

Allocate(x%value(100,200))

...
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IEEE arithmetic support

• IEEE exception handling (e.g. overflow and underflow).

• IEEE operations (e.g. remainder, nextafter)

• IEEE inquiry functions (e.g. IEEE_IS_NAN).

• Rounding mode control.

• Halting mode control.

Use ieee_arithmetic

...

z = x/y

If (ieee_is_nan(z)) Stop ’Result is Not a Number’
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Basic Object-Oriented Features

Available now:

• Type extension (single inheritance).

• Polymorphic variables.

• Type selection.
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Basic Object-Oriented Summary

• “Type extension” produces a new type by extending an old

one. The new type inherits the components of the old one.

• A polymorphic variable can have a different (dynamic) type

at different times. They are always dummy arguments, point-

ers, or allocatable.

• Type selection detects the dynamic type of a polymorphic

variable, and provides direct access to extended components.
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NAGWare f95 Future Plans

• Fortran Builder for English Windows.

• More Fortran 2003 features.

• Improved performance.

• Further improvements to error detection.
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Fortran 2003 features: next update

• Interoperability with C.

• Stream I/O and other I/O enhancements.

• New intrinsic functions and modules.

• More object-oriented features.

• Many other additions.

We have just started to ship the next update for Linux.
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Advanced Object-Oriented Features

Coming soon:

• Cloning.

• Type-bound procedures.

• Generic procedures and operators.

All these are included in the next update.
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Conclusion

• The Fortran Standard enables portable programming.

• Using new Fortran features can improve reliability.

• NAGWare f95 has unparalleled error detection.

• NAGWare f95 is in the process of being upgraded to the

latest Fortran Standard.
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Resources

Slides available on web page:

http://www.nag-j.co.jp/~malcolm/May2006-J.pdf

Slides about Modern Fortran programming:

http://www.nag-j.co.jp/~malcolm/Modern-Fortran-J.pdf

More slides about Fortran 2003 (in English):

http://www.nag-j.co.jp/~malcolm/F2003-Illustrated.pdf

Reference Book (in English): “Fortran 95/2003 Explained”
by Metcalf, Reid and Cohen.
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